
УДК 519.6
https://doi.org/10.47533/2020.1606-146X.04

A. ALTYBAY, N. TOKMAGAMBETOV, Z. SPABEKOVA

Al-Farabi Kazakh National University, Almaty, Kazakhstan

GPU COMPUTING FOR 2D WAVE EQUATION BASED
ON IMPLICIT FINITE DIFFERENCE SCHEMES

In this paper we will consider the numerical implementation of the 2d wave equation which is a
fundamental equation in many engineering problems. An approximate solution of a function is calculated
from discrete points in spatial grid based on discrete time steps. The initial values are given by the initial
value condition. First we will interpret how to transform a differential equation into an implicit finite-
difference equation, respectively, a set of finite-difference equations that can be used to calculate an
approximate solution. Then we will change this algorithm to parallelize this task on GPU. Special focus
is on improving the performance of

the parallel algorithm. In addition, we will run the implemented parallel code on the GPU and serial
code the central processor, calculate the acceleration based on the execution time. We present that the
parallel code that runs on a GPU gives the expected results by comparing our results to those obtained by
running serial code of the same simulation on the CPU. In fact, in some cases, simulations on the GPU
are found to run 22 times faster than on a CPU.

Key words: Numerical simulation, GPU, CUDA technology, wave equation, finite difference.

INTRODUCTION. The application of high-performance parallel computing in
mathematical modeling opens up new possibilities for studying physical processes in longer
time and more extensive spatial domains. Currently, various high-performance parallel
computing is used in many areas. One of such applications is acoustics. One of the most
important tasks of acoustics is the problem of wave field modeling. Already for several years,
GPUs have been used to accelerate well parallelizable computing, only with the advent of
a new generation of GPUs with multicore architecture; this direction began to give tangible
results. The goal of this work is to develop a parallel implementation of the finite difference
method for solving two-dimensional wave equation on a graphics processor using CUDA
technology and to study the efficiency of parallelization by comparing the time of solving
two-dimensional wave equation on a GPU and a central processor. There is a large amount
of work devoted to numerical methods developed for the study of wave processes in recent
decades. It includes a finite-difference method [1], a finite-volume method [2], the finite-
element method [3], a spectral-element method [4] a two-level compact ADI method [5] , the

ПРИКЛАДНАЯ МАТЕМАТИКА

*Адрес для переписки. Е-mail: arshyn.altybay@gmail.com

33

implicit Finite Difference Time Domain Methods [6], a boundary [integral] element method
[7], and spectral methods [8]. A completely non-linear model must be applied to many
problems. Most models have been developed for technical applications. These numerical
methods provide some of the most natural methods for modeling the propagation and
scattering of underlying waves in electromagnetic, acoustic and elastic studies. However,
as indicated in [9], the aforementioned methods have several disadvantages if the second-
order equations are converted to first-order systems before discretization, especially in the
presence of several spatial dimensions. Therefore, recently, much attention has been paid
to the development of efficient finite-difference methods that directly discretize second-
order differential equations [[10][11]]. The two- dimensional approach considers a highly
idealized wave field, since even monochromatic waves in the presence of side perturbations
quickly acquire a two-dimensional structure. The difficulties encountered are not a direct
result of the increase in size.

The main complication is that the problem cannot be reduced to a two-dimensional
problem, and even for the case of a two-periodic wave field, the problem of solving the
Laplace-type equation for the velocity potential arises. Most models designed to study the
three-dimensional dynamics of waves are based on simplified equations, such as second-
order perturbation methods, in which higher-order terms are ignored.

In general, it is unclear what effects are missing in such simplified models. Our current
work is motivated by recent interest in the development and application of high-order
compact difference methods for solving partial differential equations. Obviously, higher-
order compact difference schemes have better resolution on stencils with a compact grid
compared to non-compact or low-level methods [12, 13]. For multidimensional problems,
the efficiency of an implicit compact difference scheme depends on the computational
efficiency of the corresponding matrix solvers. From this point of view, the ADI method
[14] is promising because they can decompose a multidimensional problem into a series of
one-dimensional problems. It has been shown that schemes acquired are unconditionally
stable. For the proper assignment of large domains of modeling, two- or three-dimensional
computational grids with a sufficient number of points are used. Calculations on such grids
require more CPU time and computer memory resources. To accelerate the computation
process, GPU technology was used in this paper, which allows the program to operate on
larger grids. The graphics processing unit (GPU) is a highly parallel, multi-threaded, and
multi-core processor with enormous processing power. Its low cost and high bandwidth
floating point operations and memory access bandwidth are attracting more and more high
performance computing researchers [15]. In addition, compared to cluster systems, which
consist of several processors, computing on a GPU is inexpensive and requires low power
consumption with equivalent performance. In many disciplines of science and technology,
users were able to increase productivity by several orders of magnitude using graphics
processors [16, 17]. GPU programming on NVIDIA graphics cards has become significantly
easier with the introduction at the end of 2006 of the CUDA programming language (NVIDIA
Corporation 2009a), which is relatively easy to learn because its syntax is similar to C. With
GPU becoming available alternative to CPU for parallel computing, aforementioned parallel
tridiagonal solvers and other hybrid methods have been implemented on GPUs [18-25].

Zhang et al. [18] first implemented parallel cyclic reduction (PCR) and then proposed a
CR-PCR hybrid algorithm. A hybrid of PCR-Thomas method was proposed by Sakharnykh

Altybay A. е. а. GPU computing for 2D wave equation based on implicit finite ...

Вестник Национальной инженерной академии Республики Казахстан. 2020. № 3 (77)34

[24], and it was also studied by Zhang et al. [18]. There are many examples in the literature
of successfully using GPUs for wave propagation simulation [16- 31].

Here we consider some issues in the numerical simulation of some problems in the
propagation of the wave in acoustic on GPU.

NUMERICAL EXPERIMENTS. We consider two-dimensional wave equation

 ∂
∂

− ∂
∂

+ ∂
∂

= ∈ ×
2

2
2

2

2

2

2 0 0u
t

c u
x

u
y

f x y t t x y T l(, ,),(,(,)) [;] [;]]; (2.1)

subject to the initial conditions

 u(0, x, y) = j1(x, y); x; y ∈ [0; l]; (2.2)

 ∂
∂

=u x y
t

(, ,)0 j2(x, y); x; y ∈ [0; l]; (2.3)

and boundary conditions

 u(t, x, 0) = 0, u(t, x, l) = 0, t ∈ [0; T], x ∈ [0; l]; (2.4)

 u(t, 0, y) = 0, u(t, l, y) = 0, t ∈ [0; T], y ∈ [0; l]. (2.4)

We introduce a space-time grid with steps h1, h2, t respectively, in the variables x; y; t:

 w x ih i N y jh j N t k k Th h i j k1 2 1 20 0 0 1 2τ τ= = = = = = ={ , , ; , , ; ; , ,..., } (2.8)

2.1. Alternating direction implicit (ADI) method. The Alternating Direction Implicit
(ADI) method is a finite difference scheme and has long been used to solve partial differ-
ential equations (PDEs) in higher dimension. Originally it was introduced by Peaceman
and Rachford [14], but many variants have been invented throughout the years [32-34]. In
ADI method, each numerical step is split into several sub-steps based on the spatial dimen-
sion of the problem, and the linear equation system is solved implicitly in one direction
while treating information in the other direction(s) explicitly. With this alternating calcula-
tions, ADI method is unconditionally stable and second order in time and space. Another
favorable property of the ADI method is that in each sub-step the equations to be solved
have a tridiagonal structure and can be solved efficiently with Tridiagonal Matrix Algorithm
(TDMA).

For problem (2.1) the ADI method has the form

u u u c

h
u u ui j

k
i j
k

i j
k

i j

k

i j

k

i
,

/
, ,

/

, ,

+ −

+

+ +

−

− +
− − +

1 2 1 2

2

2

2 1

1
2

1
2

2
2

2
τ 11

1
2

1

1
2

1
2

1

1
22, , , , ,j

k

i j

k

i j

k

i j

k

i j
ku u u f

+

+

− −

−

−
+ − +

= (2.9)

u u u c

h
u u ui j

k
i j
k

i j
k

i j
k

i j
k

i j
k, ,

/
,

, , ,

+ +

+
+ +

−

− +
− − +

1 1 2

2

2

2 1
1 1

1

2
2

2
τ

++
+ −

+
+ − +() =1

1 1

1
22u u u fi j

k
i j
k

i j
k

i j

k

, , , , (2.10)

Equation (2.1) then can be efficiently solved by ADI method [14] in two sub-steps.
At the first sub-step, Equation (2.9) is solved in i direction:

 a u b u c u fi i j
k

i i j
k

i i j
k

i j
k

+
+ +

−
++ + =1

1 2 1 2
1
1 2

,
/

,
/

,
/

,
 (2.11)

35

where a b h ci i i= = + =τ τ τ2
2 2

2

2 2
, , and f u h u u h u fi i j

k

i j

k

i j

k

i j
k= − + + − + ++

− −

−

−τ τ τ2

1

1
2 2 2

1
2

2

1

1
2 2

2 2
2, , , ,() ii j

k
,

f u h u u h u fi i j

k

i j

k

i j

k

i j
k= − + + − + ++

− −

−

−τ τ τ2

1

1
2 2 2

1
2

2

1

1
2 2

2 2
2, , , ,() ii j

k
, . For the next sub-step, Equation (2.10) is solved in j direction:

 a u b u c u fj i j
k

j i j
k

j i j
k

i j

k

, , , ,+
+ +

−
+ +

+ + =1
1 1

1
1

1
2 (2.12)

where a b h cj j j= = + =τ τ τ2
2 2

2

2 2
, , and f u h u u h u fj i j

k
i j
k

i j
k

i j
k

i j

k
= − + + − + ++ −

+τ τ τ2

1
2 2

2

1
2

1
2

2 2
2, , , , ,()

f u h u u h u fj i j
k

i j
k

i j
k

i j
k

i j

k
= − + + − + ++ −

+τ τ τ2

1
2 2

2

1
2

1
2

2 2
2, , , , ,() .

2.2. Cyclic reduction algorithm (CR). Cyclic reduction algorithm was invented by W.
Hockney in the 1965 [35] and the CR algorithm consists of two steps: forward reduction and
backward substitution. The forward reduction step sequentially eliminate the odd-indexed
unknowns and then unknowns are re-ordered and the process is continued until one equa-
tion with one unknown is left. The backward substitution step solves the remaining one
equation and finds the unknown y, consequently finds all unknowns from the previous steps,
this algorithm fully described in work zhang[18].

Using the implicit subscheme (2.9), the cyclic reduction method is performed in the x
direction, with the result that we get the grid function ui j

k
,

/+1 2 . In the second fractional time
step, using the subscheme (2.10), the Cyclic reduction method is performed in the direction
of the y axis, with the result that we get the grid function ui j

k
,
+1 . The Cyclic reduction algo-

rithm has the order 0(t + h2), i.e. the first order in time and the second in x and y variables.
In the following, we demonstrate numerical simulations.

All calculations are made in C++ by using the cyclic reduction algorithm. For all simu-
lations Dt = 0,01, Dx = Dy = 0,01. In all visualization of result, we use Matlab R2018b.

For simulation we use initial condition:

U x y
x x y y if x and y

(, ,)
(,)(,) (,)(,), , , ,

0
0 4 0 6 0 4 0 6 0 4 0 6 0 4

=
− − + − − < < < <<

0 6
0

, ;
, .else

Ut(x, y, 0) = 0 and dirichlet boundary conditions. Some results are illustrated in Fig.1.

 t = 0 t = 0,05

Altybay A. е. а. GPU computing for 2D wave equation based on implicit finite ...

Вестник Национальной инженерной академии Республики Казахстан. 2020. № 3 (77)36

 t = 0,3 t = 1,0

Figure 1 – Displacement of wave at different times.

We adopt the unit square (x, y) ∈ [0; 1] × [0;1] as the spatial solution domain with 100
elements per each side and 100 interior points, c = 1, with initial condition

 u x y x y u x y
t

(, ,) sin()sin(), (, ,)0 2 2 0 0= ∂
∂

=π π

and u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(y, 1, t) = 0 on the boundaries. The analytical solution
of equation 2.1 is as flows: u(x, y, t) = cos()sin()sin()2 2 2 2π π πt x y .

Graphic comparisons of the exact solution with the numerical and errors are shown in
figure 2.

Table 1 – Maximum norm and norm errors.

h max error L2 – norm
0,001 10–3 10–22

0,0001 10–3 10–22

0,00001 10–3 10–23

0,00001 10–3 10–25

0,000001 10–3 10–27

Table 1 displays the convergence rate of displacement solution under grid refinement.
The convergence rates in maximum norm at the final time shows forth order convergence.

Figure 2 – Solution for time t = 1, Dx = Dy = 0,010101,
Dt = 0,0001001 from left to right exact, numerical, error

37

CUDA IMPLEMENTATION. Nowadays Graphics Processing Units(GPUs) or
graphics processors have evolved from fixed-function processors specialized for three-
dimensional graphics operations to a fully programmable computing platform for a wide
variety of computationally demanding applications. Modern GPUs are massively data-
parallel throughput-oriented many-core processors capable of providing TFLOPS of
computing performance and quite high memory bandwidth compared to a high performance
CPU.

In 2007, NVIDIA introduced CUDA, an extension to C programming language, for
general purpose computing on graphics processors. It is designed so that its constructions
allow a natural expression of concurrency at the data level. A CUDA program consists of
two parts: a sequential program running on the CPU, and a parallel part running on the GPU
[37, 38]. The parallel part is called the kernel. A C program using CUDA extensions hand
out a large number of copies of the kernel into available multiprocessors to be performed
contemporaneously. The CUDA code consists of three computational steps: transferring
data to the global GPU memory, running the CUDA core, and transferring the results from
the GPU to the CPU memory. The algorithm for solving the problem (2.1) is shown in
Algorithm 1.

Algorithm 1 – Implementation of 2D wave equation

1. compute initial condition matrix U0
2. from initial condition (2.2) we can get u = U0
3. while (t < tend) do
4. for j = 0 ,..., n
5. for i = 0 ,..., n
6. calculate tridiagonal system elements ai, bi, ci, fi
7. call function CR(ai, bi, ci, fi, yi, n)
8. calculate matrix Ux
9. for i = 0, ..., n
10. for j = 0, ..., n
11. calculate tridiagonal system elements aj, bj, cj, fj
12. call function CR(aj, bj, cj, fj, yj, n)
13. calculate matrix Uy
14. swap (u, Ux)
15. swap (U0,Uy)
16. t = t + Dt
17. end while

Here, u, U0, Ux, Uy denote u u u ui j
k

i j
k

i j
k

i j
k

,
/

, ,
/

,, , ,− + +1 2 1 2 1 respectively

EXPERIMENTAL RESULTS. In this section we show the results obtained on a laptop
with configuration, 640 cores GeForce GTX 1050, NVIDIA GPU together with a CPU Intel
Core i7 8th gen, 2.20 GHz, RAM 8Gb. Simulation parameters are configured as follows.
Mesh size is uniform in both directions with ∆x = ∆y = 1/(N - 1), c = 1 and numerical time

Altybay A. е. а. GPU computing for 2D wave equation based on implicit finite ...

Вестник Национальной инженерной академии Республики Казахстан. 2020. № 3 (77)38

step Dt is 0.01 s, and simulation time is T = 1.0s, therefore the total number of time steps
is 100. To present more realistic data, we tested six cases with domain sizes of 64x64;
128x128; 512x512; 1024x1024; 2048x2048 and 4096x4096.

The performance of a parallel algorithm is determined by calculating its speedup.
Speedup is defined as the ratio of the best-case execution time of the sequential algorithm

for a particular problem to the worst-case execution time of the parallel algorithm.

Speedup CPUtime
GPUtime

=

In Table 2 we report the execution times in seconds for serial (CPU time) and CUDA
(GPU time) implementation of cyclic reduction method to the problem (2.1)-(2.5) together
with the values of the speedup computed as the ratio in different devices

Table 2 – Execution timing and speed up with the Intel Core i7 8th gen,
2.20 GHz, NVIDIA GTX 1050.

Domain sizes CPU time GPU time Speedup
64 × 64 2.417 0.863 2.8

128 × 128 7.95 1.558 5.1
512 × 512 155.33 18.71 8,3

1024 × 1024 1198.281 76.813 15.6
2048 × 2048 1885.483 104.343 18.07
4096 × 4096 3590.3 161.33 22.3

CONCLUSIONS AND FUTURE WORK. In this paper, we have introduced a nu-
merical solution of a two-dimensional wave equation based on an implicit finite difference
scheme using the cyclic reduction method. We develop an approach parallelization of the
cyclic reduction method on the graphic processing unit parallelization of the cyclic reduc-
tion method on the graphic processing unit. And we showed how we accelerated the cyclic
reduction method on the NVIDIA GPU. From the test results of table 1, it can be seen that
the acceleration algorithm proposed by us gives a good result. Our GPU implementation
obtained a speedup around 22,3x.

REFERENCES

1 A. P. Engsig-Karup, B. Harry, H. B. Bingham, O.Lindberg. An efficient flexible-order model
for 3D nonlinear water waves, J. Comput. Phys., 228, 2100-2118, 2009.

2 D. Greaves. Application Of The Finite Volume Method To The Simulation Of Nonlinear Water
Waves, Advances in Numerical Simulation of Nonlinear Water Waves, 11, 357-396, 2010.

3 G.Richter An explicit finite element method for the wave equation, Applied Numerical
Mathematics, 16,65-80.1994

4 D. Komatitsch, J. Tromp. Spectral-element simulations of global seismic wave propagation: II
Three-dimensional models, oceans, rotation and self-gravitation Geophysical Journal International,
150:1, 303318. 2002.

39

5 H. L. Liao, Z.Z. Sun. A two-level compact ADI method for solving second-order wave
equations, International Journal of Computer Mathematics, 90:7, 1471-1488,2013.

 6 H.K. Rouf. Implicit Finite Difference Time Domain Methods. Theory and Applications/Hasan
Khaled Rouf. -LAP Lambert Academic, 208, 2011.

7 J.Grue, D.Fructus. Model For Fully Nonlinear Ocean Wave Simulations Derived Using Fourier
Inversion Of Integral Equations In 3D, Advances in Numerical Simulation of NonlinearWater Waves,
11, 1-42, 2010.

8 G. Ducrozet, F. Bonnefoy, D. L. Touze, P. Ferrant. Open-source solver for nonlinear waves in
open ocean based on High-Order Spectral method, Comp. Phys. Comm., 203, 245-254, 2016.

9 H. O. Kreiss, N.A. Petersson, J. Ystrom. Di_erence approximation for the second-order wave
equation, SIAM J. Numer. Anal. 40, 1940-1967, 2002.

10 M. Dehghan, A. Mohebbi. The combination of collocation, finite difference, and multigrid
methods for solution of the two-dimensional wave equation, Numer. Methods Partial Differential
Equation, 24, 897-910, 2008.

11 H.F. Ding, Y.X. Zhang. A new fourth-order compact finite difference scheme for the two
dimensional second-order hyperbolic equation, J. Comput. Appl. Math., 72, 626-632, 2009.

12 G. Cohen. High-Order Numerical Methods for Transient Wave Equations, Springer, NewYork,
2002.

13 J.M. Liu , K.M. Tang. A new unconditionally stable ADI compact scheme for the two
spacedimensional linear hyperbolic equation, Int. J. Comput. Math. 87:10, 2259-2267,2010.

14 D. W. Peaceman, H. H. Rachford. The Numerical Solution of Parabolic and Elliptic Differential
Equations, Journal of the Society for Industrial and Applied Mathematics, 3.1, 1955, issn: 03684245.
url: http://www.jstor.org/stable/2098834

15 A. Klockner, T.Warburton, J. Bridge, and J.S. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors, J. Comput. Phys., 228: 21,78637882,2009.

16 N. Bell, M. Garland. Efficient sparse matrix-vector multiplication on CUDA, NVIDIA
Technical Report, 2008.

17 E. Elsen, P. LeGresley, E. Darve. Large calculation of the flow over a hypersonic vehicle
using a GPU, J. Comput. Phys, 227,1014810161, 2008.

18 Y. Zhang, J. Cohen, J. Owens, Fast tridiagonal solvers on the GPU, ACM Signplan Notices,
45:5,127136,2010

19 Y. Zhang, J. Cohen, A. Davidson, J. Owens, A hybrid method for solving tridiagonal systems
on the GPU, GPU Computing Gems Jade Edition, 117,2011.

20 A. Davidson, J. Owens Register packing for cyclic reduction: a case study, Proceedings of the
FourthWorkshop on General Purpose Processing on Graphics Processing Units, ACM, 4,2011.

21 A. Davidson, Y. Zhang, J. Owens An auto-tuned method for solving large tridiagonal systems
on the GPU, Parallel and Distributed Processing Symposium (IPDPS), IEEE International, IEEE,
2011,956965,2011.

22 D. Goddeke, R. Strzodka. Cyclic reduction tridiagonal solvers on GPUs applied to
mixedprecision multigrid, Parallel and Distributed Systems, IEEE Transactions, 22:1, 2232, 2011.

23 H. Kim, S.Wu, L. Chang, W. Hwu. A scalable tridiagonal solver for GPUs, Parallel Processing
(ICPP), 2011 International Conference on, IEEE, 444453, 2011.

24 N. Sakharnykh. Tridiagonal solvers on the GPU and applications to fluid simulation, GPU
Technology Conference, 2009.

25 Z. Wei, B. Jang, Y. Zhang, Y.Jia. Parallelizing Alternating Direction Implicit Solver on GPUs,
International Conference on Computational Science, ICCS, Procedia Computer Science 18, 389398,
2013.

Altybay A. е. а. GPU computing for 2D wave equation based on implicit finite ...

Вестник Национальной инженерной академии Республики Казахстан. 2020. № 3 (77)40

26 M. A. Diaz, M. Solovchuk, W.H. Tony Sheu. High Performance MultiGPU Solver for De-
scribing Nonlinear Acoustic Waves in Homogeneous Thermoviscous Media, Computers and Fluids,
doi: 10.1016/j.compuid.2018.03.008,2018

27 D. Michea, D. Komatitsch. Accelerating a three-dimensional finite-difference wave propaga-
tion code using GPU graphics cards, Geophys. J. Int, 182, 389402,2010

28 R. Mehra, N. Raghuvanshi, L. Savioja, M. Lin, D. Manocha. An efficient GPU-based time
domain solver for the acoustic wave equation Applied Acoustics, 73, 8394, 2012

29 M. Lastra, M.J.Castro, C. Ureaa, M.Asuncin. Efficient multilayer shallow-water simulation
system based on GPUs, Mathematics and Computers in Simulation, 148, 48-65,2018

30 A. Lacasta, M. M. Hernandez, J. Murillo, P. G. Navarro. GPU implementation of the 2D
shallow water equations for the simulation of rainfall/runo_ events Environ Earth Sci doi: 10.1007/
s12665-015-4215-z

31 R. M. Weiss, J. Shragge. Solving 3D anisotropic elastic wave equations on parallel GPU de-
vices GEOPHYSICS, 78:2, 19,2013.

32 I.J.D. Craig, A.D. Sneyd. An alternating-direction implicit scheme for parabolic equations
with mixed derivatives. Computers and Mathematics with Applications, 16:4, 341350, 1988. issn:
0898-1221. doi: http://dx.doi.org / 10.1016/0898-1221(88) 90150-2.

33 J. Douglas, H. H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables, Transaction of the American Mathematical Society,82, 421489,1956.

34 Jr. Douglas Jim, James E. Gunn. A general formulation of alternating direction methods. Nu-
merische Mathematik, 6.1,428453.1964

35 R. W. Hockney. A fast direct solution of Poissons equation using Fourier analysis. Journal of
the ACM, 12:1, 95113, 1965.

36 NVIDIA, Nvidia, http://www.nvidia.com/, Accessed, 2019.
37 P. Song, Z. Zhang, L. Liang, Q. Zhang, Q. Zhao. Implementation and performance analysis

of the massively parallel method of characteristics based on GPU, Annals of Nuclear Energy, 131,
257272, 2019

38 J. Nickolls, I. Buck, M. Garland, K.Skadron. Scalable parallel programming with cuda.
Queue, 6:2,4053,2008. doi:http://www.doi.acm.org/10.1145/ 1365490.1365500.

39 NVIDIA TURING GPU ARCHITECTURE https://www.nvidia.com/content/dam/en-zz/So-
lutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-White-
paper.pdf

А. АЛТЫБАЙ, Н. ТОҚМАҒАМБЕТОВ, З. СПАБЕКОВА

Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан

ЕКІ ӨЛШЕМДІ ТОЛҚЫН ТЕҢДЕУІН АЙЫҚЫН ЕМЕС АЙЫРЫМДЫЛЫҚ
ТЕҢДЕУІ НЕГІЗІНДЕ ГРАФИКАЛЫҚ ПРОЦЕССОРДЕ (GPU) ЕСЕПТЕУ

Бұл жұмыста біз көптеген инженерлік есептердің негізгі теңдеу болып табылатын екі
өлшемді толқын теңдеудің сандық шешуді қарастырамыз. Функцияның жуық шешімі кеңістіктік
тордағы дискретті нүктелерден уақыттың дискретті қадамдары негізінде есептеледі. Бастапқы
мәндер бастапқы мәннің шартымен беріледі. Алдымен біз дифференциалдық теңдеуді айқын
емес айырымдық теңдеулерге қалай айналдыруға болатындығын, сәйкесінше, шешімді есептеу
үшін қолдануға болатын ақырлы-айырымдық теңдеулер жиынтығын түсіндіреміз. Содан кейін
біз бұл тапсырманы GPU-ге параллельдеу үшін осы алгоритмді өзгертеміз. Параллель алгорит-

41

мде өнімділікті жоғарлатуға ерекше көңіл бөлінеді. Сонымен қатар, біз GPU-де параллель код-
ты және орталық процессордың сериялық кодын іске қосамыз, орындалу уақытына қарай үдеуді
есептейміз. Біз GPU-дегі параллель коды және орталық процессорда жүктелген сериялық кодын
қолдану арқылы алынған нәтижелермен салыстыру арқылы күтілетін нәтижелер беретінін
ұсынамыз. Шындығында, кейбір жағдайларда GPU-да есептеулер процессорға қарағанда 22 есе
тез орындалады.

Түйін сөздер: сандық модельдеу, GPU, CUDA технологиясы, толқын теңдеуі, ақырлы
айырмашылық.

А. АЛТЫБАЙ, Н. ТОКМАГАМБЕТОВ, З. СПАБЕКОВА

Казахский национальный университет им. аль-Фараби, Алматы, Казахстан

РЕШЕНИЕ ДВУМЕРНОГО ВОЛНОВОГО УРАВНЕНИЯ
С ИСПОЛЬЗОВАНИЕМ НЕЯВНОЙ РАЗНОСТНОЙ СХЕМЫ

НА ГРАФИЧЕСКОМ ПРОЦЕССОРЕ(GPU)

Рассмотрим численную реализацию двумерного волнового уравнения, которое является фун-
даментальным уравнением во многих инженерных задачах. Приближенное решение функции вы-
числяется из дискретных точек в пространственной сетке на основе дискретных временных
шагов. Начальные значения задаются условием начального условия. Сначала мы объясним, как
преобразовать дифференциальное уравнение в неявное уравнение конечных разностей, соответ-
ственно, систему уравнений в конечных разностях, которые можно использовать для вычисления
приближенного решения. Затем мы изменим этот алгоритм, чтобы распараллелить эту задачу
на GPU. Особое внимание уделяется повышению производительности параллельный алгоритм.
Кроме того, мы запустим реализованный параллельный код на графическом процессоре и серий-
ный код центрального процессора, рассчитав ускорение на основе времени выполнения. Мы пред-
ставляем, что параллельный код, который выполняется на GPU, дает ожидаемые результаты,
сравнивая наши результаты с результатами, полученными при запуске последовательного кода
той же симуляции на CPU. Фактически, в некоторых случаях моделирование на GPU выполняется
в 22 раза быстрее, чем на CPU.

Ключевые слова: численное моделирование, GPU, технология CUDA, волновое уравнение, ко-
нечная разность.

Altybay A. е. а. GPU computing for 2D wave equation based on implicit finite ...

