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GPU COMPUTING FOR 2D WAVE EQUATION BASED
ON IMPLICIT FINITE DIFFERENCE SCHEMES

In this paper we will consider the numerical implementation of the 2d wave equation which is a
fundamental equation in many engineering problems. An approximate solution of a function is calculated
from discrete points in spatial grid based on discrete time steps. The initial values are given by the initial
value condition. First we will interpret how to transform a differential equation into an implicit finite-
difference equation, respectively, a set of finite-difference equations that can be used to calculate an
approximate solution. Then we will change this algorithm to parallelize this task on GPU. Special focus
is on improving the performance of

the parallel algorithm. In addition, we will run the implemented parallel code on the GPU and serial
code the central processor, calculate the acceleration based on the execution time. We present that the
parallel code that runs on a GPU gives the expected results by comparing our results to those obtained by
running serial code of the same simulation on the CPU. In fact, in some cases, simulations on the GPU
are found to run 22 times faster than on a CPU.
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INTRODUCTION. The application of high-performance parallel computing in
mathematical modeling opens up new possibilities for studying physical processes in longer
time and more extensive spatial domains. Currently, various high-performance parallel
computing is used in many areas. One of such applications is acoustics. One of the most
important tasks of acoustics is the problem of wave field modeling. Already for several years,
GPUs have been used to accelerate well parallelizable computing, only with the advent of
a new generation of GPUs with multicore architecture; this direction began to give tangible
results. The goal of this work is to develop a parallel implementation of the finite difference
method for solving two-dimensional wave equation on a graphics processor using CUDA
technology and to study the efficiency of parallelization by comparing the time of solving
two-dimensional wave equation on a GPU and a central processor. There is a large amount
of work devoted to numerical methods developed for the study of wave processes in recent
decades. It includes a finite-difference method [1], a finite-volume method [2], the finite-
element method [3], a spectral-element method [4] a two-level compact ADI method [5], the
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implicit Finite Difference Time Domain Methods [6], a boundary [integral] element method
[7], and spectral methods [8]. A completely non-linear model must be applied to many
problems. Most models have been developed for technical applications. These numerical
methods provide some of the most natural methods for modeling the propagation and
scattering of underlying waves in electromagnetic, acoustic and elastic studies. However,
as indicated in [9], the aforementioned methods have several disadvantages if the second-
order equations are converted to first-order systems before discretization, especially in the
presence of several spatial dimensions. Therefore, recently, much attention has been paid
to the development of efficient finite-difference methods that directly discretize second-
order differential equations [[10][11]]. The two- dimensional approach considers a highly
idealized wave field, since even monochromatic waves in the presence of side perturbations
quickly acquire a two-dimensional structure. The difficulties encountered are not a direct
result of the increase in size.

The main complication is that the problem cannot be reduced to a two-dimensional
problem, and even for the case of a two-periodic wave field, the problem of solving the
Laplace-type equation for the velocity potential arises. Most models designed to study the
three-dimensional dynamics of waves are based on simplified equations, such as second-
order perturbation methods, in which higher-order terms are ignored.

In general, it is unclear what effects are missing in such simplified models. Our current
work is motivated by recent interest in the development and application of high-order
compact difference methods for solving partial differential equations. Obviously, higher-
order compact difference schemes have better resolution on stencils with a compact grid
compared to non-compact or low-level methods [12, 13]. For multidimensional problems,
the efficiency of an implicit compact difference scheme depends on the computational
efficiency of the corresponding matrix solvers. From this point of view, the ADI method
[14] is promising because they can decompose a multidimensional problem into a series of
one-dimensional problems. It has been shown that schemes acquired are unconditionally
stable. For the proper assignment of large domains of modeling, two- or three-dimensional
computational grids with a sufficient number of points are used. Calculations on such grids
require more CPU time and computer memory resources. To accelerate the computation
process, GPU technology was used in this paper, which allows the program to operate on
larger grids. The graphics processing unit (GPU) is a highly parallel, multi-threaded, and
multi-core processor with enormous processing power. Its low cost and high bandwidth
floating point operations and memory access bandwidth are attracting more and more high
performance computing researchers [15]. In addition, compared to cluster systems, which
consist of several processors, computing on a GPU is inexpensive and requires low power
consumption with equivalent performance. In many disciplines of science and technology,
users were able to increase productivity by several orders of magnitude using graphics
processors [16, 17]. GPU programming on NVIDIA graphics cards has become significantly
easier with the introduction at the end of 2006 of the CUDA programming language (NVIDIA
Corporation 2009a), which is relatively easy to learn because its syntax is similar to C. With
GPU becoming available alternative to CPU for parallel computing, aforementioned parallel
tridiagonal solvers and other hybrid methods have been implemented on GPUs [18-25].

Zhang et al. 18] first implemented parallel cyclic reduction (PCR) and then proposed a
CR-PCR hybrid algorithm. A hybrid of PCR-Thomas method was proposed by Sakharnykh
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[24], and it was also studied by Zhang et al. [18]. There are many examples in the literature
of successfully using GPUs for wave propagation simulation [16- 31].

Here we consider some issues in the numerical simulation of some problems in the
propagation of the wave in acoustic on GPU.

NUMERICAL EXPERIMENTS. We consider two-dimensional wave equation

o°u o°u 82
subject to the initial conditions
u(0, %, ) =@,(X,»); Xy € [0; 1]; (2.2)
ORI g e ppixy < 021 23)
and boundary conditions
u(t, x,0)=0, u(t,x,[)=0,t € [0; T],x € [0; []; (2.4)
u(t,0,)=0,u(t,l,y)=0,1 € [0; T], y € [0; ]]. (2.4)

We introduce a space-time grid with steps %, &,, T respectively, in the variables X; y;

Wy, ={x =ih,i =0,N; y;=ih, ] =0,N; t =ktk=01..,2T} (2.8)

2.1. Alternating direction implicit (ADI) method. The Alternating Direction Implicit
(ADI) method is a finite difference scheme and has long been used to solve partial differ-
ential equations (PDEs) in higher dimension. Originally it was introduced by Peaceman
and Rachford [14], but many variants have been invented throughout the years [32-34]. In
ADI method, each numerical step is split into several sub-steps based on the spatial dimen-
sion of the problem, and the linear equation system is solved implicitly in one direction
while treating information in the other direction(s) explicitly. With this alternating calcula-
tions, ADI method is unconditionally stable and second order in time and space. Another
favorable property of the ADI method is that in each sub-step the equations to be solved
have a tridiagonal structure and can be solved efficiently with Tridiagonal Matrix Algorithm
(TDMA).

For problem (2.1) the ADI method has the form

uilf}llz 2u ;U _1/2 c? k+% k+% k+% k-2 ; k- 1 )
2 - 2h2 ui+l,j - 2ui,j + ui—1,j + ul+lj 2U + ul -1,j fi,j (29)
T
k+1 -2 k+1/2 k 2 1
U UI : C K+=
o k+1 _ k+1 k+1 _ 2
.[2 2h2( i,j+1 2U +u|] l | J+1 2U + ul j- 1) fi,j (210)

Equation (2.1) then can be efficiently solved by ADI method [14] in two sub-steps.
At the first sub-step, Equation (2.9) is solved in i direction:

k+l/2 k+1/2 k+1/2 _ ¢k
alul+lj blulj +GU;- -1 T f ij (211)
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where a, :T?,bi =1*+h%¢ :T? and f, =——u,,,% +(t° +h’ )u —%uikfl?j +2h%uy

+ fi,k j . For the next sub-step, Equation (2.10) is solved in j direction:

l
k+1 K+l K+l —
aJ|J+1 bJUIJ CJulll f (2'12)
2 2 2 2
_T 2,2 ~ - Tk T
Whereaj—?,bj—T +h 1Cj-? and fj__2u|1+1+(1: +h )U 2 Ijl+2h

k+1
+f.2

iJ
2.2. Cyclic reduction algorithm (CR). Cyclic reduction algorithm was invented by W.

Hockney in the 1965 [35] and the CR algorithm consists of two steps: forward reduction and
backward substitution. The forward reduction step sequentially eliminate the odd-indexed
unknowns and then unknowns are re-ordered and the process is continued until one equa-
tion with one unknown is left. The backward substitution step solves the remaining one
equation and finds the unknown y, consequently finds all unknowns from the previous steps,
this algorithm fully described in work zhang[18].

Using the implicit subscheme (2.9), the cyclic reduction method is performed in the x
direction, with the result that we get the grid function uk U2 1In the second fractional time
step, using the subscheme (2.10), the Cyclic reduction method is performed in the direction
of the y axis, with the result that we get the grid function U., ;" - The Cyclic reduction algo-
rithm has the order O(t + 42), i.e. the first order in time and the second in x and y variables.
In the following, we demonstrate numerical simulations.

All calculations are made in C++ by using the cyclic reduction algorithm. For all simu-
lations Az = 0,01, Ax = Ay = 0,01. In all visualization of result, we use Matlab R2018b.

For simulation we use initial condition:

M -0,4)(x-0,6)+(y-0,4)(y-0,6), if 0,4<x<0,6and 0,4<y<0,6;

U(x,y,0)= olse

U(X, y,0) = 0 and dirichlet boundary conditions. Some results are illustrated in Fig.1.

t=0 t=0,05
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t=0,3 t=1,0
Figure 1 — Displacement of wave at different times.

We adopt the unit square (X, y) € [0; 1] % [0;1] as the spatial solution domain with 100
elements per each side and 100 interior points, ¢ = 1, with initial condition

ou(x,y,0) _ 4

ot
and u(0, y, )y=u(1l,y, ) =u(x, 0, ) =u(y, 1,)=0 on the bouI_ldaries. The analytical solution
of equation 2.1 is as flows: u(x, y, f) = COS(ZTC\/E)Sm(ZﬂX)Sm(ZTW) .

Graphic comparisons of the exact solution with the numerical and errors are shown in
figure 2.

u(x,y,0) =sin(2nx)sin(2mny),

Table 1 — Maximum norm and norm errors.

h max error L2 — norm
0,001 103 102
0,0001 1073 1022
0,00001 103 10
0,00001 1073 107%
0,000001 103 10%7

Table 1 displays the convergence rate of displacement solution under grid refinement.
The convergence rates in maximum norm at the final time shows forth order convergence.

Figure 2 — Solution for time =1, AX= Ay =0,010101,
At=0,0001001 from left to right exact, numerical, error
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CUDA IMPLEMENTATION. Nowadays Graphics Processing Units(GPUs) or
graphics processors have evolved from fixed-function processors specialized for three-
dimensional graphics operations to a fully programmable computing platform for a wide
variety of computationally demanding applications. Modern GPUs are massively data-
parallel throughput-oriented many-core processors capable of providing TFLOPS of
computing performance and quite high memory bandwidth compared to a high performance
CPU.

In 2007, NVIDIA introduced CUDA, an extension to C programming language, for
general purpose computing on graphics processors. It is designed so that its constructions
allow a natural expression of concurrency at the data level. A CUDA program consists of
two parts: a sequential program running on the CPU, and a parallel part running on the GPU
[37, 38]. The parallel part is called the kernel. A C program using CUDA extensions hand
out a large number of copies of the kernel into available multiprocessors to be performed
contemporaneously. The CUDA code consists of three computational steps: transferring
data to the global GPU memory, running the CUDA core, and transferring the results from
the GPU to the CPU memory. The algorithm for solving the problem (2.1) is shown in
Algorithm 1.

Algorithm 1 — Implementation of 2D wave equation

calculate tridiagonal system elements a,, b, C,, f;
call function CR(a,, b, C, f;, v, n)

calculate matrix U,

9. fori=0,..n

10. forj=0,...,n

11. calculate tridiagonal system elements a, bj, Cp jj
12. call function CR(aJ., bj, C; fj, Yy n)

13. calculate matrix U,

14. swap (u, U))

15. swap (anUy)

16. t=1t+ At

17. end while

1. compute initial condition matrix U,

2. from initial condition (2.2) we can get u = U,
3. while (£<1¢,,)do

4. forj=0,..,n

5. fori=0,..,n

6.

7.

8.

Here, u, U, U,, U, denote U2, U, Ut Ul respectively

EXPERIMENTAL RESULTS. In this section we show the results obtained on a laptop
with configuration, 640 cores GeForce GTX 1050, NVIDIA GPU together with a CPU Intel
Core i7 8th gen, 2.20 GHz, RAM 8Gb. Simulation parameters are configured as follows.
Mesh size is uniform in both directions with Ax = Ay = 1/(N - 1), ¢ = 1 and numerical time
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step At is 0.01 s, and simulation time is T = 1.0s, therefore the total number of time steps
is 100. To present more realistic data, we tested six cases with domain sizes of 64x64;
128x128; 512x512; 1024x1024; 2048x2048 and 4096x4096.
The performance of a parallel algorithm is determined by calculating its speedup.
Speedup is defined as the ratio of the best-case execution time of the sequential algorithm
for a particular problem to the worst-case execution time of the parallel algorithm.

CPUtime
GPUtime
In Table 2 we report the execution times in seconds for serial (CPU time) and CUDA

(GPU time) implementation of cyclic reduction method to the problem (2.1)-(2.5) together
with the values of the speedup computed as the ratio in different devices

Speedup =

Table 2 — Execution timing and speed up with the Intel Core i7 8" gen,
2.20 GHz, NVIDIA GTX 1050.

Domain sizes CPU time GPU time Speedup
64 x 64 2.417 0.863 2.8
128 x 128 7.95 1.558 5.1
512 x512 155.33 18.71 8,3
1024 x 1024 1198.281 76.813 15.6
2048 x 2048 1885.483 104.343 18.07
4096 x 4096 3590.3 161.33 22.3

CONCLUSIONS AND FUTURE WORK. In this paper, we have introduced a nu-
merical solution of a two-dimensional wave equation based on an implicit finite difference
scheme using the cyclic reduction method. We develop an approach parallelization of the
cyclic reduction method on the graphic processing unit parallelization of the cyclic reduc-
tion method on the graphic processing unit. And we showed how we accelerated the cyclic
reduction method on the NVIDIA GPU. From the test results of table 1, it can be seen that
the acceleration algorithm proposed by us gives a good result. Our GPU implementation
obtained a speedup around 22,3x.
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EKI OJIIIEM/II TOJAKBbIH TEHJAEYIH AMBIKBIH EMEC AMBIPBIM/IBLIBIK
TEHJIEYI HETI3IH/IE TPA®UKAJIBIK IPOIIECCOPIE (GPU) ECENITEY

Byn oicymvicma 6i3 Kenmeeen UHICEHepIiK ecenmepoiy Heeizel menoey 60nbin mabbliamvll eKi
oenuemol moaKbiH meHoeyOiy CanoblK wewyoi Kapacmulpamol3. QYHKYUAHBIH HCYbIK UeUiMi KeHiCmIKmIK
mopoagvl OUCKpemmi HyKmeiepoeH yaKolmmuly OUCKpemmi Kaoamoapwl Heeizinoe ecenmenedi. bacmankpi
MaHOep bacmankvl MaHHIK wapmeimer Oepinedi. Andvimen 6i3 oughpepenyuandvix menoeyoi aiKviH
emec aubipblMObIK, meyoeyiepee Kauail auHanovipyea Oon1amvlHObIebIH, ColKkecinule, wewimoi ecenmey
YWIH KONOAHY2a OONAmbIH AKbIPIbI-aUbIPLIMObIK menoeynep rHcubihmolebin mycindipemiz. Cooar Kellin
613 oyn mancoipmanvl GPU-ee napannenvoey yuiin ocvl anreopummoi ezeepmemis. Ilapannens ancopum-
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MOe oHImMOinikmi dcoeapramyea epexute koHin ooninedi. Convimen kamap, 6i3 GPU-0e napannens koo-
Mbl JiCoHE OPMANBLIK NPOYECCOPObIH CEPUATBIK KOObIH ICKe KOCAMbBI3, OPbIHOANY YAKbIMbIHA Kapau yoeyoi
ecenmetimis. biz GPU-0eei napannensb KoObl dHcaHe OPMAiblK NPOYeccopod HCyKmeneeH Cepusiivlk KOObIH
KON0any apKblibl ANbIHEAH HIMUDdICENEPMEn CAaNbICMbIPY apKblibl KYMilemin namudicenep Oepemiin
yevinamuiz. [lvinovizvinoa, keubip scagoainapoa GPU-0a ecenmeynep npoyeccopea Kapasanoa 22 ece
me3 OpbIHOANAObL.

Tyitin co30ep: canovik moodenvoey, GPU, CUDA mexnonocuscel, moaxblH meHOeyi, aKvlpibl
QubLIPMAUBLILIK.
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PEIIEHUE JBYMEPHOI'O BOJTHOBOI'O YPABHEHUS
C UCITOJIBb30OBAHUEM HESIBHOM PASHOCTHOM CXEMBI
HA T'PAOMYECKOM ITPOIIECCOPE(GPU)

Paccmompum wucienuyio peanuzayuio 08YMepHO20 60JHOB020 YPAGHEHUs, KOMOPOe S8Iemcs QyH-
OAMEHMATLHbIM YPABHEHUEM 80 MHO2UX UHMICEHePHbIX 3a0ayax. TIpubnusicennoe pewieHue QyHkyuu ul-
yucsnemest u3 OUCKPEMmHbIX MoYeK 8 NPOCMPAHCMECHHOU CemKe HA OCHO8E OUCKDEMHbIX SPEeMEHHbIX
wazo6. Hauanvhvle 3nauenus 3a0armcs ycioguem HauyaibHo2o yciosus. CHauana mvl 0ObACHUM, KAK
npeobpazoeamsv JupepenyuanvbHoe ypasrHenue 6 HesiGHOe YPABHEHIE KOHEUHbIX PA3HOCEel, COOMaEen-
CMBEHHO, CUCIEMY YDABHEHULL 8 KOHEUHBIX PAZHOCMSAX, KOMOPble MONCHO UCNONb308ANMb OIS 6bIUUCTIEHUS
NPUOTUNCEHHO20 peutenus. 3amem Mbl USMEHUM dMOMm al20pumm, Ymoobl pacnapaiienums 3my 3a0ayy
Ha GPU. Ocoboe sHumaHue yoensemcs noSbluleHUrd NpouU3600UMeNbHOCU NAPATIENbHbILL Al20PUMM.
Kpome mozo, mol 3anycmum peanu3o8anubliil NAPAIIEIbHbIL KOO HA epapuyueckom npoyeccope u cepuii-
HbILL KOO YEHMPAIbHO20 NPOYeccopd, pacCuumae YCKopeHue Ha 0CHO8e 8peMeHU 8binoanerus. Mol npeo-
cmasusieM, 4wmo napaiienvhblil koo, komopwiil evtnonnsemcs: Ha GPU, daem odcudaemvie pesynvmamol,
CPABHUBAS HAWUU Pe3YTIbMAmbl ¢ Pe3yIbmamami, NOJIYYeHHbIMU NPU 3aNYCcKe NOCIe008AMeNbHO20 KOO
motl oce cumynayuu na CPU. @axmuuecku, 6 nekomopwix ciyuasx mooenuposanue Ha GPU evinonnsiemcs
6 22 pasa bvicmpee, uem na CPU.

Knrouesvie cnosa: uucnennoe mooenuposanue, GPU, mexnonoeuss CUDA, 6onnosoe ypasHnenue, Ko-
HeuHas pasHOCb.



