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NUMERICALIMPLEMENTATION OF ANONLINEAR MODEL OF FLUID FLOW
IN A HIGHLY FRACTURED MEDIUM BY THE FINITE ELEMENT METHOD

The paper presents the research results of the iterative method for solving the nonlinear problem of
fluid flow in highly porous fractured formations, carried out within the framework of the grant project
of the Ministry of Education and Science of the Republic of Kazakhstan No. AP08053189. It is assumed
that the fluid flow process in the indicated medium is described by a nonlinear fractional differential
equation of anomalous diffusion containing fractional order derivatives in the sense of Caputo-Fabrizio's
definition. The first order approximation formula of the fractional derivative is obtained and its properties
are investigated. A semi-discrete (with respect to time) and fully discrete finite element schemes of the
second order with respect to the spatial variable and the first order with respect to time are constructed.
An iterative Newton method is constructed for solving a fully discrete nonlinear equation that occurs at
each time step after discretization. The convergence of the method is studied and sufficient conditions for
the quadratic convergence of the Newton method are obtained. The results of the theoretical analysis are
confirmed by the results of a number of computational experiments.

Keywords: fluid flow in porous media, finite element method, fractional derivative in the sense of
Caputo-Fabrizio, Newton's method, convergence, computational experiments.

Introduction. For a long time, it was believed that the theory of Muskat-Leverett
most fully describes the process of fluid flow in porous media. However, as shown in [1],
this theory is not quite adequate in the case of fluid flow in fractured media. On the other
hand, it is well known that fluid flow in natural media is usually nonlinear due to the high
inhomogeneity of porous media. In such cases, the classical rheological Maxwell, Kelvin-
Voigt, or Zener equations do not fully describe the process and require a transition to their
fractional differential analogues [2]. In mathematical models of the fluid flow process,
fractional order derivatives in the sense of Caputo [1], Riemann-Liouville [2], Caputo-
Fabrizio [3], and others were used. The problems of fluid flows, where their dynamics
are influenced by a fractured-porous medium and memory effects, are described by the
fractional-order integro-differentiation theory in [2, 4]. In [2], several models were proposed
to describe fluid flow processes in complex fractured-porous media containing fractional
Riemann—Liouville derivatives in time and space. For single-phase flow, a nonlinear
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pressure equation containing fractional Riemann-Liouville derivatives in time is obtained, a
fractional-differential modification of Darcy's law is proposed, and a fractional-differential
equation for anisotropic fluid flow is obtained. A fractional-differential modification of
the Barenblatt-Gilman model for nonequilibrium two-phase countercurrent capillary
impregnation is also proposed, taking into account the effects of power memory when the
system relaxes to a local equilibrium state. The classical equations describing the motion
of a fluid in a porous medium in [1, 5] were rewritten taking into account the memory
formalism using the fractional derivative in the sense of Caputo. The main contribution
of [5] is that for the two-phase flow of an incompressible and immiscible fluid in porous
media, fractional derivatives of various orders in the Caputo sense with a variable lower
limit in fractured and matrix regions were applied, and a two-level discrete time method was
also introduced and developed. In [6], a nonlinear two-dimensional orthotropic fluid flow
equation with a fractional Riemann—Liouville derivative in time is considered. In [3], the
phenomenon of longitudinal dispersion in the flow of two miscible fluids through a porous
medium is studied using the Caputo-Fabrizio fractional derivative.

It is known that the derivative considered in [1] has a degenerate singular kernel which
makes it difficult to apply approximate methods for its solution. Later in 2015, a new
derivative in the sense of Caputo-Fabrizio appeared which is devoid of these shortcomings.
The latest features of the Caputo—Fabrizio fractional derivative operator provide more
realistic models that help one better adjust the dynamic behavior of real phenomena, as
discussed in [1, 3].

Due to the complexity of the application of analytical methods for obtaining solutions
to fractional differential equations, the main method for solving such problems, especially
nonlinear ones, remains numerical methods. There are many works devoted to the development
and study of finite difference methods with various approaches of discretization of fractional
derivatives [8, 9]. Other numerical, in particular, finite element [10, 11] and finite volume
[12, 13] approaches are also being developed. Fully discrete nonlinear problems are usually
solved by various methods. For example, the Newton's iterative method [14, 15], first-order
linearization schemes [16], or the Jaeger-Kachur scheme [17].

The aim of this paper is to prove the applicability of the Newton's iterative method
for solving a nonlinear differential equation of fluid flow in highly fractured media
with a fractional derivative in the sense of Caputo—Fabrizio's definition. We propose a
finite element method for implementing a one-dimensional nonlinear fluid flow model
in fractured media. Semi-discrete and fully discrete schemes of the second order with
respect to the spatial variable and the first order with respect to time are constructed.
The Newton's iterative process for solving nonlinear systems of algebraic equations
arising when implementing a fully discrete scheme at each time step is constructed.
The convergence of the method is analyzed and sufficient conditions for its quadratic
convergence are obtained.

Model of fluid flow in a fractured porous medium. In the classical theory of fluid flow
in porous media, the continuity equation under the assumption of a single-phase flow of an
isothermal fluid in a homogeneous porous medium has the form

d,(¢p)+V-(ptr)= f, (1)



10 Becmnux Hayuonanvhoti unscenepnoi akademuu Pecnyonruxu Kazaxcman. 2021. Ne 3 (81)

where ¢ is the porosity of the medium, p is the fluid density, {j is the velocity vector, f'is
density of mass sources. One approach to modeling fluid flow in a fractured porous medium
is to replace the specified medium with some model homogeneous porous medium with
power-law memory. Due to the fact that porosity depends on the pressure of the fluid and
on the stress-strain state of the medium, which exhibits viscoelastic properties, it can be
concluded that porosity is a function not only of pressure, but also of'its fractional derivative
or fractional integral [2]:

0=0(p.95,p), ae(-11), )

where the operators of fractional differentiation and integration in the sense of the Caputo-
Fabrizio's definition [18, 19] are defined as:

y.u( _n VJ.u exp( Vr:i]:/_l(t—‘t))d’t, n-1<v<n, neN,
Ly u(t)= ———— 2(1 v) +VJ dt, 0<r<1, neN,

where M = M(r) is a function such that M(0) = M(1) = 0. In addition, the following fractional-
differential generalization of the classical state equation is proposed in [20]:

p=p(p.95,p), Be(-L1). 3)

To account for the effect of fractures on the fluid flow process, several generalizations of
linear Darcy's law are known. For example, in [1], the motion law is generalized under the
assumption that the permeability decreases with time, and therefore the influence of fluid
pressure on the flow in a porous medium at the boundary slows down, and the flow occurs as
if the medium had a memory. On the other hand, a fractional Darcy law with spatial memory
based on the Riemann-Liouville fractional derivative is proposed in [7]. In this paper, the
subdiffusion law of motion is chosen as follows:

Vp

~@(35 (VP g

1<(0.1), )

which can be used to describe fluid flow in natural fractured-porous media, in which the
fractures are distributed on average evenly over the volume [2], where ®(z) is a given
function. Substituting (2)-(4) into (1), we obtain the following nonlinear fractional
differential equation for the flow of a viscoelastic fluid in a fractured-porous medium under
the assumption of a small pressure gradient:

(!, (V
¢(Cf1+C¢1)atp+¢c¢o¢ag;lp+¢Cfﬁagxlp_v'[va]: fov (5)
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h f_f ¢ SEL C =10 lassical isoth 1 ibility of a fluid and
- TN 5 0L T t t
where fo =" 5 En =05, B T g gp are classical isothermal compressibility of'a fluid an
. _1 op 1 90 . . .
a porous medium, and Cp = ————~, C,, = ——— are their generalized fractional-
pa(ao:‘ p) ¢ a(aOtp)

differential isothermal counterparts [2].
Let us study the special one-dimensional case of the model (1)-(4) in more detail. In
Q =Qx [O,T] , where Q = (0,1), consider the initial boundary value problem

3 p+Cp, 95 p+Cdb P -k (@(97,(p,))) =T >0, xeQ, (6)
p(x,0)=py(x), x Q] (7
p(0,t)=p(Lt)=0, t>0. (®)

First, we define a variational formulation of the problem (6)-(8).

Problem 1. Find p € Hl(O,T; Hé(Q)) , such that for any ve H; (Q) :
(0,P.V)+ Ty (957 PoV) + Ty (57 PV + E(np(agt (px)),vx) =(fv), O

p(x,0) = p, (x), (10)

where a € (-1,0), B € (-1,0), vy € (1,0).
Throughout the paper, we use the following assumptions:
(A1) The problem (6)-(8) has a unique solution that has the number of derivatives
required to perform the analysis.
(A2) The function @: R — R is a differentiable real-valued function defined on Q, such
that
®’(z)2c, >0, zeR, (11)

@(z,)-®(z,) <L |z, -2], L, >0, z,7,€R (12)

(A3) The initial condition p° is bounded and positive.

Semi-discrete and fully discrete formulations of the problem. Introduce a partition
of the time interval [0, T] by the points . = nt, n = 0,1, ..., N, Nt = T. To determine the
semi-discrete formulation of (6), (7), we derive the approximation formula of the fractional
derivative in the sense of Caputo-Fabrizio's definition.

Lemma 1. The discrete analog of the Caputo-Fabrizio fractional derivative of order v
can be represented as:

9y, P(t,)=Ag,p(t,)+r’, 0<v<l, (13)

n!



12 Becmnux Hayuonanvhoti unscenepnoi akademuu Pecnyonruxu Kazaxcman. 2021. Ne 3 (81)

p(tn)=§8z,s(ps -p), (14)

where p* denotes a finite-dimensional approximation of the function p at pointz =7,

exp(-0,t,) max p”(t)|r.

3v ostst,

v
n

exp(c 7)-1
v

SV

_ v
exp(—(n-s+1)o,1), 0, = -

Define a semi-discrete formulation of the problem (6)-(7):
Problem 2. Let the value of p"™ € Hy(Q) be known. Find p" € Hg(2) such that for
allve Hg (Q) :

pn - pnil o+l B+1 Y AN - ra
(__?__,] (8300 )0 (Al ) (@A) )= (B, as)

p° = Py (x), (16)

where a € (-1,0), B € (-1,0), y € (1,0).
To formulate a fully discrete problem, we define a discrete space V, = H;

Vv, :{vh e Hy (Q )mCO( ) | v,l.eP(e), Vee Kh},
where K, is the quasi-uniform triangulation of Q. Let I1, be the L* — projection operator,
such that (TT, p— p, p,) =0, Vpe L' (Q), p, eW, .
Problem 3. Find Pr € Vs ,n=1.2,.., N, satisfying

n_ pnl
(ph Tph ’Vh} (Aa+lph’vh)+cfﬁ (AB+lphvVh) ((D(Agvt prr‘]!x)’vh'x):(

o) (17)

Py =TI, p,, (18)

for any v, € V, where a € (-1,0), B € (-1,0), vy € (1,0).

Previously, the authors proved the following theorems in the special case
D(p) = no(xt)+y(xt).

Theorem 1. Under the conditions (A1)-(A3), the following inequality holds:

2 n
o+ 2 o(e)-

where ¢, = min{c,,8%;",C,,857 ud!, } .

[p(t,)- <ct,

Theorem 2. Let pe Cl([O,T], Ho (Q)nH? (Q)) , P €V, and Py =TI, P, . Then there

exists T, > 0 such that for all t < 1, the following inequality holds:

[p(t,)- il %Ilp(tn)— o, sc(t+n?),

where ¢, = mln{ 871t Crpdnt ! }

b nd !
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For the more general case of ®@ considered in the paper, the method converges only with
the first order in the spatial variable with an additional restriction on the diameter of the
triangulation.

Implementation of the Newton's method. In this section, we present a Newton's
method for solving the nonlinear problem (6)-(8). Rewrite (15), using (14):

CoP(p" - p”‘l,v)+rIZ(d>(6}(Yn p" + H;"B),vx) =(F,,v), (19)
where
n-1
Cob =1+1821C,, + T )iTp, HEP = =87 Q‘1+26§y5(pj— Py,
F =1, S50 (0 - pt) Tcmzsw( g,
s=1

Denote the i-th iteration by p™ and, limiting ourselves to the first two terms in the Taylor
expansion of @, we obtain

CeP(p™ = ptv)+
+1k (@ (8], pp ™+ HE?)+ 31, (2 - p o By, pi + HEP) v, ) = (F,v). (20)

Lemma 2 [14]. Let f: R — R be a differentiable function, and f'(-) be Lipschitz
continuous. Then

. Lf' 2
[100= ()= MOy, = Ix-vly, ey R
where L, is the Lipschitz constant.
Theorem 3. Under the conditions (A1)-(A3), the following inequality holds:
Cr
| 0o h5 |
Proof. Subtracting (20) from (19), we obtain the following identity:

n n,i n

2 . 4
+ -
0 T p 0

p-—p px px p

Cﬁ;ﬁ(p” - p”'i,v)+1IZ(CI)(8§'n p! + Hr?"ﬁ)—CI)(éSY plit+ H;"B)—

=57, (P = Py )@ (87,1 + HEP) v, )+ 1k (8, (P =y ) (87, Py + HEP v, ) =0
Denote ¢"' = p" — p™ and choose v = ¢"':
CoP(e™, "')+tk( (81, p7 +HP)— (8] pp ™+ HP) -

— 81 e (81, prt HE) et )+ 7k (87 0" (81, p + HEP) e') = 0

Using assumption (A2) and Lemma 2, we obtain
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. L, .
cob e +1ke, 87, [ler <1:8y K| —=ler "1|2 eMldx <
n,t 0 Q 2 X
- y N, 2 n,i-1 4 y L, n| 2
<8C 87 ok (Lo ) [y * 1:6
which yields
S o e T e A (Y S W
T o C (@)

4
Using the inverse inequalities ||V||L4(Q) <Ch ¢ ||V||L2(Q) and ”Vx "o <Ch™ ||V||0 , we obtain

en,i—l||4
X 0

1

ﬂ i

k6y

0 0

which concludes the theorem. Ct
It follows from the theorem that if a sufficient condition is satisfied 3

the quadratic convergence of the Newton's method is achieved.
Computational experiments. To check the accuracy of the scheme (20), a number of

computational experiments were carried out on the example of two model problems.
Example 1. Consider the equation

A p+0ip+alitp— (arctan (0%, (p, )))X =f,t>0, (1)

n_ pn,i—1||2 <1

0

p

Cekp (o +1)t/a) - exp(t/2) . exp((B +1)t/) - exp(U/2) exp(t/2)
& a+?2 B+2 2
) 2(y + 1)(exp(ty/ (v -1))-exp (t/2))

(exp (t) - 2exp(ty/ (v —1) + U2) + exp(2ty/ (v - 1)))(4x2 —Ax+1)+y? +2y +1

£ (1) = x(x-1) [ é

with the initial and boundary conditions
p(x,0)=x(1-x), x LQ) p(0,t)=p(L,t)=0, t>0, (22)

where o € (-1,0), B € (-1,0), v € (1,0). The exact solution of the problem is p(X,t) =
=X(1-x)exp(t/2) .

Example 2. Consider the equation
o p+a5ip+asip— (arctan (03, ( px)))X =f,, t>0, (23)
1 -1 1 -1 Ul
[elp ((a +1)t/a +1) L &P (B+1)up) =

where f, (x,t) = sin(mx)exp(2 —t)g 2a+1 2p+1 =

2y - 1)5|n(nx)exp(2+t)(exp(ty/(y 1)+t)- 1)

+
i cos(mx)* (exp (2tyr(y -2)+ 2t +4) - 2exp(ty/ (y -1) +t +4) + exp(4)) +exp(2-1)(4y* -4y +1)
with the initial and boundary conditions
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p(x,0)=sin(nx), x [Q] p(0,t)=p(L,t)=0, t>0, (24)
where a € (-1,0), B € (-1,0), vy € (1,0). The exact solution of the problem is

p(x,t) =sin(mx)exp(2-t) .

In tables 1 and 2 errors values for different values of the parameters oo = —0.5, f =—0.5,

y=0.5 are shown.

Table 1 — Convergence of the Newton method for the Example 1,
with a=-0.5, 3 =-0.5,y=0.5, h = 0.05, = 0.025.

t=0.025

t=0.05

t=0.125

t=05

t=1

2.5824682-10°!

1.6148931-10!

3.4512562-10

1.3654528:10°

9.0365485-10*

2.5559525:10°

1.3654821-10°

2.9604762-10*

6.6548218-10°

9.6542582-10¢

1.5852454-107

9.1236548-10*

9.6548924-10°

5.5852454-10"

6.9655420-10°1°

7.2354156-10"

Table 2 — Convergence of the Newton method for the Example 2,
with o =-0.5, B =-0.5,y=0.5, h = 0.05, = 0.025.

t=0.025

t=0.05

t=0.125

t=05

t=1

2.6352452-10"

1.6525215-10"

2.3256012-10

1.22565215-10°

1.3295214-10°

1.96532541-10°

1.6521562-10°

1.0215921-10*

1.2159852:10°

1.5625921-10°

5.3562548-10%

4.3832568:10°®

4.3255489-107

9.3265802-10°1°

5.6254862-10°1°

Conclusions. Thus, a finite element scheme is constructed for the nonlinear fractional-
differential equation of anomalous diffusion, which describes the fluid flow process
in highly porous fractured formations, containing a fractional derivative in the sense of
Caputo-Fabrizio. An approximation formula of the first order of the fractional derivative is
obtained and its properties are investigated. The order of convergence depends only on the
sampling parameters. At each time step, the resulting nonlinear algebraic systems are solved
by Newton's method. In addition, a sufficient condition for the quadratic convergence of the
Newton scheme is obtained. To confirm the theoretical results, two numerical examples were
presented. The empirical convergence agrees well with the theoretical estimates. Based on
the theoretical results and numerical experiments, we conclude that the presented numerical
scheme is effective and can be used for effective modeling of fluid flow problems in highly
porous fractured formations.

The work was supported by grant funding of Ministry of Education and Science of the
Republic of Kazakhstan, grant No. AP08053189, 2020-2022.
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H. b. AJIHMBEKOBA

Capcen Amandconog amvinoaes Lllvizeic Kazaxcman yHugeepcumeni,
Ockemen, Kazaxcman

KOF APBI ’KAPBIKIIAJIBI OPTAIA CBI3BIKTbI EMEC ®UJIBTPALIA
MOJIEJIIH AKBIPJIBI SJIEMEHTTEP 9AICIMEH CAHZBIK KY3EI'E ACBIPY

Makanaoa KP BoctfM  epanmmuis  xapocviranovipoiizan  AP08053189  acobacwt  ascevinoa
JHCYpeizieen KeyeKminil Hco&apvl HCapblKUaibl Kabammapodsesl Cbl3blKmbl emec Quivmpayus ecedin
wewtyoiy umepayusanslk 20icin 3epmmey Hamudicenepi ycvinvliean. Kymvicma kepceminzen opmaoazvl
Gurempayus ypoici Kanymo-@abpuyuo magbiHacblHOabl 66auex pemmi myblHObLIApbl 6ap aHOMAlb-
Obl Ouphysusinbly col3blKMbL emec 6oaueK-OUp@epeHyuanloblK meyoeyimen cunammanadvl oen 6oxica-
Haowl. bonwex myviHOviHbIY OIPIHWI pemmi JHCYLIKMAY GOPMYAACHl ANbIHObl JCIHE OHBIY Kacuemmepi
sepmmendi. Yaxolma Kamvlcmvl HCaApmuliail OUCKPEmmi JCoHe KeHICMIKMIK QuHbIMAaibl OOUblHUA
eKiHWi pemmi JcaHe YaKvim OOUbIHWA OIpiHwi pemmi monvleblMeH OUCKPemmi aKblpibl-21eMeHmmiK
cynba Kypwiiool. Jluckpemmeyoen Keilin ap yawlm KadamblHOA navoa 60namvlH mMoablk OUCKpemmi
CbI3bIKMbL emec menoeyoi wewty yuwin Hotomonnviy umepayusnvlx 20ici Kypwiiovl. Kunaxmuliviy
Mmaceneci sepmmendi scane Hoiomon a0iCiniy K6aopammulK HCUHAKMbLIbIEbIHLY HCCMKLLIKIME WUapmmapbsl
kenmipindi. Teopusnvlk manday Hamudicenepi Oipgkamap ecenmey 5KCHePUMEHMMEPIHIY HamudcerepimeH
pacmanaowi.

Tyiiin ce3dep: Kkeyekmi opmadazvl CYUbIKMBIKMbIY A2bIHbL, AKbIPIbL dnemeHmmep 20ici, Kanymo-
Dabpuyuo MagbinackIHOazbl 6OIUEK MYbIHObL, Hblomon 20ic, JICUHAKMbLTLIK, ecenmey dKCnepuMeHmmepi.

H. b. AJIHMBEKOBA

Bocmouno-Kazaxcmanckuii ynueepcumem umenu Capcena Amamndiconosa,
Yemuv-Kamenozopck, Kazaxcman

YUCJIEHHAS PEAJIN3ALIVA HEJJMHEMHOM MOJIEJIA ®UJIBTPAIIUA B
CHWJIBHO TPEIHIMHOBATOM CPEJIE METOJIOM KOHEYHBIX JIEMEHTOB

IIpedcmasnenvi pe3ynomamul UCCIE008AHUAL UMEPAYUOHHO20 MEeMOOA peuleHUs HeTUHEeHOU 3a0aiu
Gunvmpayuu 8 CUTLHONOPUCIIBIX MPEUWUHOBAMBIX NAACMAX, NPOBOOUMO20 8 PAMKAX SPAHMOB020 NpO-
exma MOH PK AP08053189. B pabome npeononazaemcs, umo npoyecc Quibmpayuul 8 yKasanHou cpeoe
ONUCHIBACMCS. HETUHECTHBIM OPOOHO-OUpDepeHyuaIbHbIM YPABHEHUEM AHOMANLHOU Oud@y3uu, cooep-
arcauum npouzeooHvlie 0pobHo2o nopaoka 6 cmvicie Kanymo-@aodpuyuo. Ionyuena annpoxcumayuonnas
Gopmyna nepeoco nopsioxka OpooHOU NPOU36OOHOU U UCCTe008aHbL ee ceoticmaa. TTocmpoenvl nonyou-
CKpemHas, OMHOCUMENbHO 8PEMEHI U NOTHOCMbIO OUCKDEMHAS KOHEUHO-2NIeMEHMHble CXeMbl 8MOPO20
NOPAOKA NO NPOCMPAHCMBEHHOU NEPEMEHHOU U NEP8020 NOPsLOKa no epemenu. [locmpoen umepayuonnbviil
memoo Hviomona 0na pewenus NOIHOCMbI0 OUCKPEMHO20 HENUHENHO20 VPAGHEHUs, GOZHUKAIOWe20 Ha
KAadcOOM BPEMEHHOM waze nocie ouckpemusayuu. Mcciedoean 6onpoc o cxooumocmu u npugedetsi 00-
cmamounvle YCa08Us Keaopamuunou cxooumocmu memooa Heromona. Pe3ynemamul meopemuueckoz2o
ananuza noOMeepIHcOarmcst pe3yIbmamamu psioa GblYUCTUMETbHBIX IKCNEPUMEHNO8.

Kniouesvie cnosa: meuenue dcuokocmu 8 NOPUCMbIX cpedax, Memoo KOHEUHbIX d1eMeHmos, OpooHas
npouzeoonas 6 cmvicie Kanymo-@abpuyuo, memoo Horomona, cxooumocms, guluuciumenvHoie IKCnepu-
Menmbi.



