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STABILIZED FINITE ELEMENT METHOD FOR THE SATURATION
EQUATION IN THE TWO-PHASE NONEQUILIBRIUM
FLUID FLOW PROBLEM

In this paper, an approximate method for solving the saturation equation in the problem of two-
phase nonequilibrium flow in porous media is constructed. This problem is being studied as part
of the work carried out under a grant project funded by the Ministry of Education and Science of
the Republic of Kazakhstan, Grant No. AP08053189. This equation refers to an equation of the
convection-diffusion type with a predominance of convection and with an additional term containing
the third-order derivative of the solution. Due to the hyperbolic nature of the equation, its solution
is accompanied by a number of difficulties that lead to the need for a careful choice of the solution
method. One of the difficulties is the appearance of non-physical oscillations at the interface of the
two phases. Three classical stabilized finite element methods (SUPG, GLS and USFEM) are compared
based on computational experiments. In addition, comparative calculations were performed using
several stabilization parameters due to the sensitivity of the stabilized methods to the choice of
these parameters and the significant dependence of stability and accuracy on them. Methodological
calculations are carried out and the results of calculations with different values of mesh configurations,
stabilization parameters are presented.

Key words: finite element method, stabilized method, nonequilibrium flow in porous media, SUPG,
GLS, USFEM.

Introduction. The dynamics of the fluid flows of a multiphase fluid depends in a
nonlinear way on both the structural and mechanical properties of the fluid and the properties
of the surrounding skeleton. However, in real reservoir conditions, the property of delayed
phase saturation has a significant effect on the flow process, the study of which led to the
emergence of the theory of non-equilibrium flows. The influence of nonequilibrium can be
significant: the time for establishing saturation in the conditions of oil fields is on the order
of a year.

One of the main models of nonequilibrium flow [ 1] is based on thermodynamic arguments
and volume averaging of microscopic equations of conservation of mass and moment, which
led to the need to add additional terms to the macroscopic equations. In [1], the concept of
dynamic capillary pressure P (instantaneous local difference between phase pressures)
was introduced, which relates to the static capillary pressure P (capillary pressure under
quasi-static displacement) by the ratio

P™ = p, - p, = P™ —1,(5)d,s, (1)
where p, and p, are the phase pressures of oil and water, 1, is the phenomenological
coefficient taking positive values, and S is the water saturation. Dynamic capillary pressure
has been the subject of many experimental [2] and theoretical [3, 4] studies.
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Taking into account the nonequilibrium law (1), the two-phase nonequilibrium flow
problem is reduced to solving a system of partial differential equations for determining
pressure and saturation fields. In the paper of the authors [5], an iterative method for solving
the pressure equation based on the mixed finite element method is constructed.

The aim of this paper is to develop a finite element method for solving the saturation
equation in a two-phase nonequilibrium flow model with the nonequilibrium law proposed in
[1]. This equation refers to an equation of the convection-diffusion type with a predominance
of convection and with an additional term containing the third-order derivative of the
solution. Due to the hyperbolic nature of the equation, its solution is accompanied by a
number of difficulties that lead to the need for a careful choice of the solution method. One
of them is associated with a jump of the solution at the interface, when the saturation is
accompanied by a sharp change in the transition from one zone to another.

It is known [6-8] that the application of the classical Galerkin method to calculate
saturation field using the widely used IMPES method in the neighborhood of the gap leads
to non-physical oscillations. One way to overcome such oscillations is the streamline
upwind Petrov-Galerkin finite element method (SUPG), which was proposed by Brooks and
Hughes and later earned the attention of many researchers. The essence of the method is to
add an additional artificial viscosity with a certain stabilizing parameter. Currently, quite a
few varieties and implementations of the method have been developed. Applications of the
SUPG method to the solution of saturation equations are known [9].

Other popular method for solving convection-dominated equations are the Galerkin
least squares method (GLS). An essential feature of the GLS method is the modification of
the weak form construction for the Galerkin method and acts as a means of stabilizing the
fluid flow equations. The GLS is closely related to SUPG, but is a conceptually simpler
and more general methodology applicable to a wide range of problem classes. There are
known applications of the method to the implementation of the ice cover model [10],
incompressible Navier-Stokes equations [11], Maxwell model with upper convection [12]
and others.

Another stabilization method leads to the unusual stabilized finite element method
(USFEM), proposed in [13]. The main idea of the method is to extend the space of piecewise
continuous polynomials by functions defined element-by-element, in such a way as to
improve accuracy and stability. The solution is sought as the sum of two solutions from two
spaces — the space of linear polynomials and the space of one basis functions called bubble
functions. This method is used to solve the stationary convection-reaction problem [14], to
implement the large vortex model [15], and many others.

The disadvantages of the stabilized methods include their sensitivity to the choice of
stabilization parameters, which significantly affects the stability and accuracy of the method.
Therefore, the problem of choosing a parameter should be thoroughly investigated. There
are a number of papers [16-18] devoted to the study and comparison of the stabilizing
parameters for the Navier-Stokes equations, the convection-diffusion-reaction equation,
and others.

This paper compares three classical stabilized finite element methods (SUPG, GLS, and
USFEM) to the initial boundary problem for saturation equation, as well as the stabilization
parameters based on computational experiments.



Omariyeva D. A. Stabilized finite element method for the saturation equation ... 115

Formulation of the problem. In a bounded domain Q, =Qx(0,T) , where QcR?
with the boundary I'=T, U’y | TN =& | the following initial boundary value
problem is considered [1]:

0d,s+V-U,=q,, (2)
—pds+V-0, =q,, 3)

0, = -k, (5)1:Vp,. a.e o], @
Po = Py = P (8) - LOs, (5)
s(x,0)=s,(x), x (2] (6)
p(11)= Py (x1) TTI (0T, g
Vp-A=0, (x,t)eT x(0,T], (®)

where G, = (u,; (X,t),U,, (x.t)) and P, = P, (xt) are the velocity and pressure of the phase
a, respectively, s = S(X,t) is the water saturation, p, = p, (S) is the capillary pressure, N is

the external unit normal to the boundary I, L = L(s) >0.
To derive the computational model, introduce the total velocity vector as follows:
G=d, +0, ©)
Using (4), we obtain
0= —k (A, VP, + A, VP,), (10)

where Ao =KMo s the mobility of the phase a. Introduce a new variable, global pressure
p, such that

AVp, +2,Vp, =AVp,
(11)
where A = A, + A, is the total mobility. Using the equations (2)-(5) it is not difficult to write
out the explicit form of the variable p:

1 1 .
P=p, + P, + 5 (0 =) p =5 [ (- ) L (E)dE (12)
A

o

where h =h, (s) and h, =h, (S) are some functions such that h, +h; =1 and f, = o

To obtain the pressure equation, sum the equations (2) and (3) and use the equations

(10) and (11): _
V- :0, (13)

(kA)"G+Vp=0.
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It is not difficult to show that the phase velocities are expressed in terms of the total
velocity by the relation
b, = f,(s)i-y(s) 3y, (s) {IB,s), (14)

where y(s) =—-KX, (S) fw(s) ddpS° >0, 1 (S) = K2, (3) f, (s) > 0 . Substituting (14) into (2),

we obtain the equation for saturation:

09,5+ T, (s)0- Vs = V-(y(s)Vs) = V-(v,(s) V(L,s)) = 0. (15)

Thus, a computational model consisting of the equations (13), (15) and the corresponding
initial and boundary conditions is obtained.

In [5], a finite element method for solving equations (13) is constructed, and the
convergence of the method is investigated and its a posteriori analysis is carried out. Let us
focus on solving the equation (15) in more detail, assuming the vector j is known. Namely,
in the domain QT defined above, consider the equation

d,s+As+Bos=f,(xt)eQ (16)
s(x,0)=s,, x [Q) (17)
Sng,XEFD;VS'ﬁng,XGFN,t>O, (18)

where
As=10-Vs—kV?s, Bs=-k,V’s,

/- g, g, are given functions, K , K, are some constants. Assume that the problem has a

unique solution in the class of sufficiently smooth functions.
LetV = {ve HY(0,T;HY(Q)): vy, = gD} V, ={veH'(Q):v|.=0}-
Define a weak statement of the problem (16), (18): find s€V such that for all WEV,, :
(9,5, W)+ (k,Vs,Vw) + (U - Vs,w)+ (k,V9,s, Vw) = (f,w), (19)

where (.,-) denotes the scalar product in L(Q) |

Stabilized methods. Introduce the quasi-uniform triangulation ©® in Qand let N_be the
number of elements in © . Let V;, CV be the finite element space defined as follows:
Vv, ={weV, vl e R (K) VK e6},
where P, (K) is the space of polynomials of degree at most k on the triangle K. Introduce
a uniform partition of the time interval [0, 7] by points t, =NT  NT=T  1t>0 . Denote a
finite dimensional approximation of s at t=t, by S; . Then the standard Galerkin method
for (16)-(18) is defined as follows. Let S, €V, be known. Find Sy € V4 , such that
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) (s1—snt.w, )+ a(sy,w, )+b(s) =57 w, ) = T (w, ), Yw, €V,, (20)
where

a(s, w,) = (k 50 + (v Os w, ), b(s,,w,) = (k 057 08),
o(w,)= (f,wh)+_[erthd0.

In previous studies of the authors, the equation (19) was solved by a combined finite
volume element method and the following result was obtained.

Theorem 1. If the condition f e L*(Q; ) holds and 7 is sufficiently small, there exists a

unique sequence of solutions Sh , N=1,2,....,N such that

K 1o K
0+1,/?”Vsh OSmax{\@, 3k,L +r,/?}|

Theorem 2. Let S be the solution to (19) and Sy be the sequence of solutions to (20).

Then under the condition Nov™{[V]|, < 1 there exists T, > 0 such that for T< T,

fn

) sC(r2 + hz).

Ittt el

In this paper, we study the stabilized finite element methods for solving (20). The main
class of these methods is based on an extension of the discrete variational formulation using
a grid-dependent stabilization term. A general view of these methods for (20) is defined as
follows: find S €V, such that

(st — s w, )+ a(sy,w, )+b(s) —siw, ) +1S(s7, W) = 19 (W, ), YweV,,

where S(-,-) is the stabilizing term added to the standard Galerkin formulation, whose
general form is

S(8,Wy) = ZTK (Ash _(P’Awh)K ,
K

Tk is the stabilization parameter. The specific choice of the operator A leads to different
stabilized methods. For example [16],

SUPG: Aw, =V-Vw,, @)
GLS: Aw, = —kAw, +V-Vw,,
USFEM: Aw, = kAW, +V-Vw,.

One of the important points in the implementation of stabilized methods is the choice
of the stabilization parameter Tx . The parameter is selected based on the properties of
the problem, such as the discrete maximum principle, convergence analysis, stability, and
others. The examples of stabilizing parameters are as follows [17-20]:
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1

- 2 _ n2) 2
K hZ h, ’ he hy
12k, 2 ])" 7|
a _ V
TK_(hil+ h:] | s C( . D |

where h,_is diameter of the element X, G(x)={1,0<x<1;x,x>1} .

(23)

Comparison of the stabilizing parameters. Let us compare the stabilized methods
(22) and the stabilizing parameters (23) based on two computational experiments. The
first computational experiment is to estimate the deviation from the upper and lower
bounds of the solution using stabilized methods and stabilizing parameters and different
grid configurations. The second computational experiment is to compare an approximate
solution with a known exact solution.

Problem 1. In Q; =Qx(0,T) , where Q = (0,1)%(0,1) consider the equation (16) with
the parameters T =1, v = (0.15,1) ko = 107 , and initial and boundary conditions

s(x,0)=0, =1, x ¥ =0}; s(x,t)=0, x x =0} Cfx =1},
VS-ﬁ=0,XE{X2:1}.

In the computational experiment, three grid configurations containing 968, 3744, and
15110 elements were used. The value of the parameter t is set to 102. The calculations
were performed until the time layer n = 100, corresponding to the time value 7= 1, was
achieved.

Implementation of (20) without the use of stabilization leads to the appearance of
non-physical oscillations with an approach to the final time the absolute value of which
is more than 60%. Table 1 illustrates the dependence of the deviation of the approximate
solution on the exact bounds, depending on the stabilization method and the stabilizing
parameters. The use of stabilization allows one to extinguish non-physical oscillations.
In general, the deviation from the exact bounds is less than 3% for all three methods
considered.

Table 1 — Results of the computational experiments for Problem 1

Exact bounds Without

e SUPG + 1t GLS + USFEM + 1
N stabilization c ¢ ¢

min max min max min max min max min max

968 0.00 1.00 | -0.34 | 1.63 | -0.03 1.03 | -0.02 1.02 | -0.02 1.03
3744 | 0.00 1.00 | -0.26 | 1.28 | -0.02 1.01 | -0.01 1.00 | -0.01 1.01
15110 | 0.00 1.00 | -0.17 | 1.13 | -0.01 1.00 | -0.01 1.00 0.00 1.01
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Problem 2. In Q; =Qx(0,T) , where Q=(-0.5,0.5)x(-0.5,0.5) the problem (16)-

. 1 1
(18) with the parameters K, =10 fu= (—2,—2) and the right-hand side

—_LZ iZ _i 2 % +x, -t
f(xt)= \/Es(p (x,t,s)+2£(p (x.t,€) % 0% (x,t,€)tanh EpraE |

—k, L—J;Q)Z(X,t,e)tanh(%z_j _iq,“(x,t,e):l

€ 2¢°

X + X, —t
is considered where ¢(X,t,&)= Sech%

+x,—t
problem is s(x,t) = 0.5- tanh% ‘

and €=107 | The exact solution of the

The accuracy value was estimated in the L>-norm. Two values of the T parameter equal
to 1/30 and 1/60 are accepted. The grid configuration was chosen in the same way as in
Problem 1. To estimate the influence of the term with the third derivative of the solution,
we considered two cases, k, = 10 and k, = 10%. According to the results of computational
experiments, the SUPG method was the most effective in the first case, and GLS and
USFEM are in the second.

Table 2 — Results of the computational experiments for Problem 2,
case k, =10

N, t=1/30 t=1/60
Methods c s a f c s a f
TK TK TK TK TK TK TK TK
1 2 3 4 5 6 7 8 9 10
_ 968 1.2052 | 1.1246 | 1.0218 [ 1.1089 | 1.1473 | 1.0045 | 0.9286 | 1.0083
Wlthqut . 3744 10.8934 | 0.9924 | 0.8214 | 1.0086 | 0.9645 | 0.8531 |0.6425 | 0.8028
stabilization

15110 | 0.6911 | 0.7512 | 0.6457 | 0.8645 | 0.6654 | 0.6491 | 0.4289 |0.6732
968 0.0515 | 0.0617 | 0.0654 | 0.0618 | 0.0143 |0.0183 |0.0192 | 0.0185
SUPG 3744 1 0.0212 | 0.0399 | 0.0347 | 0.0313 | 0.0071 | 0.0089 |0.0093 |0.0090
15110 | 0.0091 |0.0148 | 0.0098 | 0.0100 | 0.0033 | 0.0045 | 0.0047 |0.0043
968 0.0623 | 0.0692 | 0.0649 | 0.0621 |0.0147 | 0.0185 |0.0188 |0.0187
GLS 3744 ] 0.0325 | 0.0347 | 0.0332 | 0.0396 | 0.0079 | 0.0089 | 0.0090 |0.0093
15110 | 0.0112 {0.0119 | 0.0113 | 0.0136 | 0.0032 | 0.0041 | 0.0043 |0.0041
968 0.0647 |0.0645 | 0.0657 | 0.0589 |0.0076 |0.0189 |0.0191 |0.0190
USFEM 3744 ]0.0344 | 0.0375 | 0.0345 | 0.0315 | 0.0527 |0.0095 | 0.0096 |0.0095
15110 | 0.0128 | 0.0112 [ 0.0137 | 0.0132 | 0.0497 |0.0043 |0.0042 |0.0044
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Table 3 — Results of the computational experiments for Problem 2, case k, = 102

Methods t=1/30 t=1/60
N, i T T T i T8 T8 T
K K K K K K K K
1 2 3 4 5 6 7 8 9 10
Without 968 1.3211 | 1.2835 | 1.1256 [ 1.2164 | 1.3858 | 1.2764 | 1.1014 | 1.4875
stabilization

3744 | 0.7547 | 0.8436 | 0.9182 [0.9384 | 1.0645 | 0.8621 | 0.7574 | 1.0064
15110 | 0.5583 | 0.6487 | 0.7365 | 0.6912 | 0.8257 | 0.6471 | 0.5314 | 0.6947
968 0.0789 | 0.0808 | 0.0758 |0.0718 | 0.0296 | 0.0287 | 0.0214 | 0.0273
SUPG 3744 ]0.0352 | 0.0438 | 0.0328 |0.0394 | 0.0131 | 0.0114 | 0.0112 | 0.0117
15110 | 0.0128 | 0.0200 | 0.0111 |0.0182 | 0.0068 | 0.0051 |0.0054 | 0.0058
968 0.0658 | 0.0687 | 0.0687 |0.0654 | 0.0141 | 0.0114 | 0.0147 | 0.0146
GLS 3744 ]0.0368 | 0.0341 | 0.0348 |0.0323 | 0.0054 | 0.0047 | 0.0075 | 0.0052
15110 | 0.0193 | 0.0187 |0.0158 |0.0187 | 0.0021 | 0.0024 | 0.0036 | 0.0027
968 0.0618 | 0.0614 | 0.0625 |0.0682 | 0.0747 | 0.0141 | 0.0116 | 0.0112
USFEM 3744 ]0.0384 | 0.0351 | 0.0387 |0.0337 | 0.0674 | 0.0051 | 0.0057 | 0.0053
15110 | 0.0161 |0.0163 |0.0178 |0.0187 |0.0131 |0.0029 |0.0025 | 0.0021

Conclusion. Thus, the application and comparison of the stabilized SUPG, GLS, and
USFEM finite element methods for solving two-phase non-equilibrium flow problem have
been investigated. The study showed the effectiveness of the methods considered. The
results obtained will be used in subsequent studies.

The work was supported by grant funding from the Ministry of Education and Science
of the Republic of Kazakhstan, grant AP08053189, 2020-2022.
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. A. OMAPUEBA

Capcen Amanoiconos amuvinoazel Llvievic Kazaxcman ynueepcumemi, Ockemen K.

EKI ®A3AJIbI TENE-TEHCI3 ®UJIbTPALIUS] ECEBIHJIETT
KAHBIKTBIK YIIIH TEHJAEY/I INEIIYIIH TYPAKTAHABIPBLIFAH
COHFbI DJIEMEHTTEP 9JICI

Byn ocymvicma exi ¢azanvt mene-meyciz gunompayusn ecebinoei KAHbIKMbIK YiH meHoeyoi
wewtyoiy acyvikmay a0ici scacanowl. Byn ecen KP BFM kapocoinianovipamuin AP08053189 swcobacw
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OOUBIHIUA OPLIHOAIAMbIH 3epmmeyiep ueHOepinde Kapacmulpbliadvl. byn menoey Koneéekyuscwl Oa-
CblM DONAMBIH JHCIOHE WEUIMHIY YWMIHWE pemmi MyblHObICbL KOCOIMULA KIpemiH KOHG8eKYUs-Oup@y3ust
mypinoezi menoeyee oicamaovl. Tenoeyoin 2unepOOIAblK CUNAMbIHA OAUIAHBICMbL OHbL  UEUL)
Oipkamap KublHObIKMAp myavl3adbl JHCoHe wleuty 20ICiH MYKUsm manoday Kaxcemminicine axeneoi.
Kuvinovikmapowiy 6ipi - exi ghazanvly wexapacvlHoa Qusuxkanvl emec mepobenicmepoiy natida 601ybi.
Ecenmey maocipubenepine cytiene omoipbin, yul K1aCCUKANbIK MYPAKMAHOBIPLIIZAH AKbIPIbL J1eMEHM-
mep adicmepi (SUPG, GLS osicone USFEM) canvicmuipulnovl. Conviven Kamap, mypakmanoblpbliean
20icmepdin ocvl napamempiepoi mayoay2a ce3iMmanobleblHA HCIHE OPHLLKMbLIbIK, NeH 02N0IKMIY 01apad
atimapnvikmai mayenoinieine oaiianvicmel Oiprneuie Mypaxmanobipy napamempiepin Kon0ana omulpsin
CAnbICMbIPMAIbl ecenmeynep Hcypeizinoi. Odicmemenix ecenmeyiep Hypeizinoi xHane mop KoHueypa-
YuACvl MeH MYPAKMaHoblpy napamempiepiniy apmypii MoHOepiH natdaiausbin xCypeiziieen ecenmeyiep
Hamuokcenepi YColHblaObL.

Tyitin co30ep: axvipivl snemenmmep 20ici, MYPAKMAHOBIPbLIZAH 20IC, Mene-meHciz Guibmpayus,
SUPG, GLS, USFEM.

A. A. OMAPHEBA

Bocmouno-Kazaxcmanckuu ynueepcumem umenu Capcena Amamndiconosa,
2. Yemo-Kamenozopcx

CTABWIN3UPOBAHHBII METO/J KOHEUHBIX JJIEMEHTOB
11 YPABHEHUSI U151 HACBIIEHHOCTH B 3AJAUE ®UJIBTPALIUN
NBYX®A3HOI HEPABHOBECHOM KUJKOCTH

B oannotii pabome nocmpoen npubnusicennvlii Memoo peuleHus ypagHeHus 05 HACbIWeHHOCMU 8 3d-
daue 08yxaszHoll HepagHogecHou Gunompayuu. JJannas 3a0a4a uzyuaemcs 6 pamKax uccied08anul, bl-
nonxsiemuvix no npoexmy, Qpunancupyemomy MOH PK, epanm AP08053189. Dmo ypasuenue omuocumes k
VPAGHEHUI0 MUNa KOHGeKyuu-oughgysuu ¢ npeobnadanuem KOH8eKyuu u ¢ OONOIHUMETbHbIM YIEeHOM, CO-
odeparcauum nPoU3BOOHYI0 peuienus mpemve2o nopaoka. Msz-3a eunepbonuueckozo xapakmepa ypagHeHusl
e20 peuieHue conposoNcoaemcs psaoom mpyoHocmell, KOmopbvie NPUBOOAm K HeoOX0OUMOCMU Mujamensb-
1020 8blbopa memooa peuterus. OOHOU u3 mpyOHocmell AGAAMCs NOAGIEHUe HePUIULECKUX OCYULTAYULL
Ha epanuye pazoena 08yx ¢az. Ha ocrnoee goruuciumenbublx SKCHEPUMEHMOE NPOBEOCHO CPAGHEHUe Mpex
KIACCUYECKUX CMAOUIUZUPOBAHHBIX Meno0008 KoHeunvlx snemenmos (SUPG, GLS u USFEM). Kpowe
mo20, NPoedeHsl CPAGHUMENbHBIE PACUEMbL C UCHONb306AHUEM HECKOTIbKUX NapAMempos cmaduiu3ayuu
6 C6A3U C UYBCMBUMENLHOCTBIO CIAOUTUZUPOBAHHBIX METNOO08 K 8blO0PY OAHHBIX NAPAMEMPO8 U 3HAYU-
MeNbHOU 3A6UCUMOCTbIO CIMADUTLHOCU U MOYHOCIU om HuX. 1Ipoeedensvt memoouueckue paciemvl u
npeocmasienvl pe3yIbmamyl pacienos ¢ pasiuiHbIMU 3HAUEHUAMY KOHQU2YPayuil cemxu u napamempos
cmabunuzayuu.

Knioueevie cnosa: memoo KOHEUHBIX 2IEMEHMOS, CMAOUIUBUPOBAHHUIN MeMOO, HepPaGHOBECHAs
Gunempayus, SUPG, GLS, USFEM.



