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ANALYSIS OF THE NUMERICAL SOLUTION OF THE
THREE-PHASE NONISOTHERMAL FLUID FLOW PROBLEM

This paper is devoted to the construction and study of the stability and convergence of a numerical
method for solving the problem of three-phase non-isothermal fluid flow in porous media, taking into
account capillary forces, which was carried out within the framework of the grant project No. AP08053189
provided by the Ministry of Education and Science of the Republic of Kazakhstan. The model under
consideration describes the processes occurring in oil reservoirs during the production of heavy oil by the
method of thermal steam stimulation of the reservoir. The formulation of the differential problem is based
on the introduction of a change of variables called global pressure, which makes it possible to exclude the
capillary pressure gradient from the pressure equation. For the numerical solution, a numerical scheme
was constructed. An a priori estimate in the energy norm is obtained, which expresses the stability of the
constructed scheme with respect to the initial data and the right-hand sides of the equations. The theorem
on the convergence of the solution of a numerical scheme to the solution of a differential problem is
presented.

Keywords: three-phase non-isothermal fluid flow, global pressure, convergence, stability.

Introduction. The urgency of solving the problem of three-phase fluid flow in porous
media is due to its important practical significance in predicting the production of high-
viscosity paraffinic and highly viscous oil by steam injection into the reservoir. This is due
to the fact that, at present, the reserves of this category of oil are several times higher than the
reserves of so-called light oils, which leads to the need to use secondary or tertiary methods.
However, due to the rather high cost of these methods, research aimed at improving its
effectiveness is of great practical importance. At present, this can only be done by methods
of mathematical modeling of fluid dynamics processes occurring in oil reservoirs during
field development.

The mathematical model of three-phase non-isothermal fluid flow in porous media studied
in this paper is a generalization of the two-phase isothermal fluid flow model constructed
in [1, 2]. A lot of works are devoted to the study of the well-posedness of multiphase fluid
flow problems with various assumptions about physical data, as well as the development
and justification of computational algorithms for their approximate solution [3-7]

Numerous works are devoted to the numerical solution of three-phase fluid flow in
porous media models [8, 9]. In [10], a numerical study of a multiphase flow model based
on the application of the finite element method was carried out using the example of an
underground hydrology problem. In [11], a method for solving the problem of a three-
phase compositional model of compressible fluid flow is proposed, which combines a high-
order discontinuous Galerkin method and a multiscale hybrid finite element method. [9]
uses the Galerkin’s modified weighted residual finite element method with asymmetric
basis functions. The papers [12, 13] proposed an original high-order multiscale scheme
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for the incompressible case. In [4], using the example of model problems of three-phase
isothermal fluid flow, it is shown that from a computational point of view, the solution of
this problem using global pressure is more efficient than the solution of the problem in the
phase formulation.

A review of the literature showed that no studies have been carried out in which the
idea of introducing a global pressure is used to model the nonisothermal fluid flow of a
three-phase compressible fluid. In this regard, in this paper, we propose a new formulation
of the problem, which is based on a change of variables, similar to the original works [7,
14]. Following these papers, this change of variables is called the global pressure, and the
resulting problem is the problem of three-phase non-isothermal fluid flow in the global
formulation.

In [15] a three-phase non-isothermal fluid flow model was developed using the concept
of global pressure, efficient difference schemes for its implementation were constructed, and
theoretical studies of approximation, stability, and convergence were carried out. Further, in
[16], cost-effective difference schemes for a particular case of this model are proposed and
mathematically justified. The complexity of solving the problem is related to the complexity
of the physical process, phase transitions, the need to track the position and characteristics
of the thermal front with good accuracy, and the strong dependence of the solution accuracy
on the grid cell size.

In this paper, the problem of three-phase non-isothermal fluid flow in porous media
is considered taking into account capillary forces. An a priori estimate is obtained that
expresses the stability of the scheme with respect to the initial data and the right-hand sides
of the equations. The convergence of the solution of a difference scheme to the solution of
a differential problem is presented. _

Research methodology and results. In Q =Qx[0,t,], where Q=[0,1]x[0,1], 1 >0,
the problem of three-phase non-isothermal fluid flow in porous media of immiscible fluids
in a homogeneous, isotropic medium is considered, with the capillary forces and phase
transitions between the phases of water and coolant taken into consideration [15]:

CTE;—T+U-VT—th2T: f., (1)
aT
Bp at V- (k, (x.t,p)Vp)—B; a—+V(kTVT)=fp, ?)
Ba (3, (x4:5,)5,)- V- (v, (x)V(p- p.)) = L. 3)
b)

%—V (2, (xt.5,) Vs, )= V- (v, () V(p = p,)) = f,, 4)
U =-kA(yWp-EVT), Q)
T(x,0)=T,, p(x,0) = py, 54 (X,0) =S4, (6)

aT o, OT
—ki, aT— 0,x,=0; khax =0,x, =1, (7)

m m
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p _ —ay 9P _
_ p—axm_o,xm_o, kp—aXm_o,xm—l, (8)
ds ds
v, —2=0,x =0; v, —%=0,x_=1.
VW axm Xm VW axm Xm (9)

Here the subscripts W,0,9,I' denote the phases of water, oil, coolant and rock; ¢ and
K are the porosity and permeability of the medium; P, (Xat) is the pressure, S, (X,t) is the
saturation, P, (P, T) is the density, k_ (s,) is the relative phase permeability, i, (T is the
viscosity, i, (T) is the enthalpy, U, is the internal energy of phase @ ; K, is the thermal

conductivity coefficient; 4« and G are source/sink functions and heat output; U, is the

filtration rate vector; |, is the intensity of phase transitions.
Let us assume that the function k, depends on spatial variables, time and global

pressure; the functions k, =k, (xt,p) .k, (x,t) and A(x,t) are continuous in ﬁx[O,ti]

and the following conditions holds:

cog|kp(p)|§cl, k, = 4c,, |A|<c,, ¢y, ¢ >0. (10)

Assume that the functions ¥ , & are calculated for some average values of pressure,
temperature, and saturations and are known functions of the spatial variable and time, and

¢, <(v.6)<c,. (11)

Regarding the functions v, and a, , we assume that a, = a, (X t,s ) ,a,=v,=0

14 Yy

when s, =0;a, =v, =0 fors, =1, and the following inequalities hold:

(a,.a,,v,)<c,, (12)

The values C; , Kk, , Bp are assumed to be constant. Since the constants Cr | Bp do not
affect the stability and convergence of the numerical scheme, we will assume that these
constants are equal to one to simplify calculations, i.e. ¢; =1, B, =1 In addition, we assume
that the function B; =, (x,t) and the constant k satisfy the inequalities

B; 6,1, (13)
k<c,r, (14)

where T is the time discretization parameter. Let function Pc be known, for which the
following relation holds:

Vp, =bVs, +b,Vs +b,Vp+b,VT, (15)
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ap ap, ap op
=_"c b b = _C, b =_Tc
where by = 0s ds ap “aT

w g

» and
lbo|>c, >0,|b,|>c, >0,|b|<cs, [b,] <. (16)

Let us consider the following discrete scheme for Problem (1)-(5):

E;Tth+|_(a“,fh)+/\lTh = £, (17)

Bp + A,p" =B, T+ AT" + ), (18)
Bsu + AgySy + Ay Sy + Ap, P+ A, T" = £, (19)
BS" + Ay S" + Agy St + Ay "+ Ay T = 11, (20)
Lk}‘(‘(hpgm +E-‘hT£n)' 1)

7"(0)=To, P"(0) = Poy Sa (0) = Sao, 22)

where

B=E+TtwA A=A+A,
2
L(0,6)=05Y (B; (x)u,"6, +B,(x)u,6; ),
m=1
A= ZAlm,Azy Z(xm )A3Y+ % (X)ALY),
Aﬂyz{—Zhr;lyxm+y,xm:0;—y;mx +y,xme£2hm,2h Vi TV Xn I}
Al,my:{_Zhr;lk:yxm’x _0 khyx X ’XmEth;Zhnzlk:yim’Xm:I}'
+ — ) _ h—lkh -0 _ kh .2h—l kh “Im =
Az,my_ 2 m pyxm'xm _0’ ( pyxm ;m’XmEQh,m’ m p)/xm ’Xm d
A;'my:{—Zhr;l(k;‘me )+1m X :0?‘(k2y;m )X Xy € 20Ky X, = I},

A30¢,my = {_thlvg yxm 1 Xm = 0;_(V2y;m )X ’Xm € Qh m’2h me ! Xm = I}’
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2
Ay =X [ ) ALY +xm () ALY,
m=1

Niumy = {—Zhr;laiyxm,xm =0-(aly, ) o eQaizn(aly, ) "X = l},

Agumy = {—2hrﬁl(a2 Vs )ﬂm X, = 0;—(a2 Y. )X Xy €Q, 20 Al I},

m

Ag,my={—2hn:1k?yxm,><m=0;—k Vo X € Qi 20 KT Y, X —|}

h,m? Xm ' m

th=f, +0o(n?), £/ = f, +0(n?),

and the functions B* (x) and %" (X) are defined as follows:
Bmm={mn01xe9mwmmﬂyﬁwn=zﬁmm
A (X) = {1, X =0;0.5, %, €Qy 5150, %, = I},
x;(x):{o,xs_m =0;0.5,%,_, €Q, 5 111, X, = I}.

Let us introduce the following seminorms:

o =5 3 (v ) (v ) Il =53 (v, ), +{ve2,) |

Let us assume that the following conditions hold with respect to the initial values of the
global pressure and temperature:

en—aet, - [T°[; —[[p°[; 0. 23)

em -t [T, — <[]} =0, (24)

where >0 is some real parameter, Cs is a positive constant, g, is the constant, determined
— W 2 . .
by the formula g, = 042 j:lz xeﬁhbh (X)( P + T ) " (X - XEW) ) hh,, Cs is the constant given

4(n+2
by C4 = Cl - max {M16&}
3c,m ¢,
To study the stability of the scheme (17)-(22), consider the problem with perturbed

initial condition ('I:O, B, ,§a0) and right-hand sides ( fr, fp , fa) and denote the corresponding
solution of the perturbed problem by (Th f) , W, g) Further, denote

ezTh_fh,WT = fTh_ fTh’TE: p _r)hvlllp = fph_ fph’
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o,=s" -8y, =f'—f" a=w.g,

o

¢,=u,—0,, m=12,

and obtain the problem for 6,m,6,, ,i :

Bet+L(U“,f“)—L(ﬁ“,?“)+Alé=wT, (25)

Brt, +A,p" —A,P" =B16, + AB+ (26)
BG,. + A Sy — AguSe + A, Oy + Ap, T+ Ag 0=, 27)
BG,, + AyySy — AyySy + AggOy + Ay T+ Ag 0=y, (28)
o = KA (7', +E"6, ), (29)

0(0)=6°, n(0)=1°, 5, (0) = " (30)

Study of the stability of the constructed scheme is based on the following lemmas which
are proved similarly to [15].
Lemma 1. Under the conditions (10) , (12), the following estimates holds:
2 T2 2 T 2
2x(nw )< [ + = o, + S| >0,
(A, w) 2 de, ]

B T T, .
2t (AW, W) < W] + ;llwlli + E”W"; ,€>0.

Lemma 2. Under the conditions (12), the operator A,,, satisfies the inequalities

(A W= A W, W — W) > 5 [lw — W,

_ 2 T T
2 - A <26 -l + Sl + Sl ) e>0

Lemma 3. Under the conditions (10), (13), where ® > ®, ,

4¢} 2
(Dl: ﬁ+& (14.&)_{_0_2_{_& (31)
c, ¢ 0) € ¢yo

the following estimate holds:

~ 2 3
[l + 2251 < o, ()l + =22 o + o ) lolf + o (o),
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Lemma 4. Under the conditions (10), (13), o > 0)2 ,
m2=C—2+C—°+ 601 (1+1) (32)
€,0 30 | ¢ 83 )
the following inequalities hold:
~ul? c, ¢ 2
R
B 3 g, g

2

oo 222 <l o B e P+ SR

Pl (33)

o

where € , € >0

Lemma 5. Under the conditions (10), (11), (14), (23), (24), ® > o, ,

3:cf(n+2)(l+£)+ c,n +c:2(11+2—4c:2n) 2cm ¢ | 34
8c, 8) d(n+2) 3261 n+2 24
the following inequalities hold:
T+ 1el, + o'+ <en
[P, +8°], + ds o]} + a7 <cn
Lemma 6. Under the conditions (14), (23) the following inequality holds:
2e(L(u"T") - L (" T").6) <den+ chm o]} + 2011]1: o,
Lemma 7. Under the conditions (14), (23), (24), ® > o, ,
_ ¢ (c,+8(c, +1)+2cm) (35)
! 2¢,5 '
the following estimate is valid:
A2
], + 7 (0w, )0l +2(4c, e, )o]; <
4c,T
<dgn+d, (T)||9||ZB ”WT ” L
Lemma 8. Under the conditions (12), (16), ® > o, ,
o, = L 2c181(1+6)+Cl(l+c6+c7)(1+ 828+6+82) , (36)
(1-¢,)8 €, 3

where €, and €, are determined from the conditions
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2c, —4ce —(1+¢,)(1+¢, +¢, )g," >0, (37)
2C, — C4&, — 2Cie, — 2¢,€," >0, (38)
the following esimate holds:

Ow

2 2 2
o d11'c||<sw||8 + dlthGg ”8 <

<dg ”Gw”Z +dy, (T)Hcg HZ + (11517”75”12 + dleT||9||f + duT”‘Vw”ivl '

Lemma 9. Under the conditions (12), (16), ® > ®, , where ®s is defined in Lemma 8,
the following estimate holds:

~ 2
[ +dust]o | + dtlo,; <

< dy ||Gg ”23 + dz1(T)”Gw”; + dyy Tl + doatf; + d24t||\ug ”jrl :

Let us present a stability theorem for a numerical scheme.

Theorem 1. Under the conditions (10)-(14), (16), (23), (24), ® > ®, , ®; = MaXi=1s®; + €
€>0, where ®i are defined by (31), (32), (34)-(36), the numerical scheme (17)-(22) is
stable with respect to the initial data and right-hand sides of the equations, and the following
estimate holds:

2 2

A

0

~

2 ~ |12
T . +H0'g 5 + d25T||9”12 + dZGT”n"f +

Ow

+
B

+
B

2 2 2 2
+d11T||0W||8 + dlzruog Hg + dlsTHch Hg + dlgr||0W||9 <

<dgn+d, (T)”e”; +d, (T)||TC||ZB +dy, (T)”Gw”; + 0y (T)Hcg Hza +

N 4c,T
Cl

”LIJT ”i—l +d, (T)Hw p”i—l + d17T"qJW||2A_1 * d24t“l“9 Hj\‘l '

Proof. Combining the results of Lemmas 3, 7, 8 and 9, we obtain the inequality

2 2C,¢
B HZ(@_% —%)II&II%

2 2 2

A

0

~

I

+||O
B 9

Cw

+
B

+
B

c
+21(4c0 —ce, —d,(g;)—dy - 0|23)||9||l2 + T(EO —dis —dy )”7‘”12 +

2 2 2 2
+d, 1|0 |8 + dlzTHOQHB + dls'l'Hcg Hg + d19T||0W||9 <

W|

< dgn+ iy ()]]f, + &y (V)] + (chs + s (0)) o, + (s (0) + g o, |, +

N 4c,T
Cl

”LIJT ”i—l +d, (T)Hw p”i—l + d17T"qJW||2A_1 * d24t“l“9 Hj\‘l '
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2
1

. .. .. . 2

,Choosing €, , €, , &; from the condition of positiveness of the coefficients of ”6t || Ao le|
HE”l , we arrive at the assertion of the theorem.

Now we study the convergence of the numerical scheme. Let (T, p.s, ,u) be the solution

to problem (1)-(9), and (Th, ph,sg,uh) be the solution to the discrete problem (17)-(22).

Then the error @=T"—T ,m=p"—p , 06, =5, -5, JC=t"-u satisfy the problem

¢, -BO +L(u"T") - L(uT)+k,A0 =y, (39)
B, Bl +A,p"—A,p=P:0 +k A O+, (40)
BG,, + 3,0, + A5, Oy + Ay, T+ A 0=y, (41)
Bsy, + A0y + Ngy0, + AT+ Ay 8=, (42)
G = kA" (v, +E76] ), (43)
6(0)=0,n(0)=0, 5, (0)=0, (44)

where (WT A a) is the approximation error on the solution:
v, =F —L(uT)-kAT-c, BT,
\ij = Fp _A2p+BTTt _kTAlT _Bp ’ Bpt'

v, =F,—A,S, —A

3wSw

S A7Wp _ABWT’

swog

W, = F = Ay Sy + AgySy + A P+ Ag, T,

69w

Similarly to the results discussed in [17, 18], we prove a theorem on the convergence of
a numerical scheme to solving problems:

Theorem 2. Under the conditions of Theorem 1, the solution of the discrete problem
(17)-(22) converges to the solution of the differential problem (1)-(9) with the order

O(hslz + T) .

Conclusion. Thus, a discrete scheme is proposed for the numerical solution of the
problem of three-phase non-isothermal fluid flow in porous media, taking into account
capillary forces. Using the method of energy inequalities, an a priori estimate is obtained
that expresses the stability of the difference scheme with respect to the initial data and the
right-hand sides of the equations. A theorem on the convergence of the numerical scheme
to the solution of problems is presented. Based on the theoretical results, we conclude that
the presented numerical scheme is efficient and can be used for efficient modeling of three-
phase non-isothermal fluid flows in porous media. In further works, the results of numerical
experiments will be presented.
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JI. P. BAUTEPEEB, H. b. ATHMBEKOBA

Capcen Amanconog amvinoaest Lllvizeic Kazaxcman yHugepcumeni,
Ockemen, Kazaxcman

YL ®A3AJIBI U3OTEPMAJIBIK EMEC ®NJIBTPALIMSA ECEBIHIH
CAH/bIK LHEIINIMIH TAJIJJAY

Maxkana Kazakcman Pecnybnuxacvl Binim dicone ebliblM MUHUCIPLIZIHIY CPAHMMbIK  KAPHCHL-
aanovipsiizan AP08053189 ocobacwl asicvinOa sacypeizinemin KanuiispivlK Kyumepoi eckepe Onibl-
puin, yul azansl u30mepmanviK emec Quibmpayus eceOin weutyoiyy canoblk 20iCiH KYpyea JdcaHe OHbllY
OPHBIKMbLILIELL MEH JHCUHAKMALYBIH 3epmmeyee aphanea. Kapacmuipblibln omuipean mMooens MyHai
KamnapuiHa 0y-2icbliy aCepinen ayblp MYHAll OHOIpY Ke3iH0e MYHAU Kamnapblhoa 6oiamoll ypoicmepoi
cunammatiovl. /fughpeperyuandvt ecenmi Ko KblCbIM MeHOEYIHeH KANULIAPAbIK KbICbIM 2PAOUSHMIH allblN
macmayea MyMKiHOIK 6epemin 2100anb0i KblCbIM AUHbIMALLLIAPLIH Ayblcmblpya Hezizoeneen. Ecenmi
wewy ywin canowix a0ic Kypacmuipuliovl. Bacmankvl monimemmep men menoeyiepoiy oy HaKmapviia
calikec KYpacmulpuliean CYa0anbly OPHLIKMbLILIZbIH OLI0IpEemit IHEPUSILIK HOPMAOAd anpuopivik 6aza
anvinovl. Canovlk cynba wewiminiy oupdepeHyuanovi ecen wewimine JHCUHAKMbLIbIEbL MYPAIbl Meo-
pema YColHbLIObL.

Tyiiin ce30ep: yw asanvl uzomepmanvix emec Quivmpayus, 2100anb0i KbiCbIM, HCUHAKMBLIbIK,
OPHBIKMbBLILIK.

JI. P. BAUTEPEEB, H. b. ATHMBFEKOBA

Bocmouno-Kaszaxcmanckuii ynueepcumem umenu Capcena Amamndiconosa,
Yemuv-Kamenozopck, Kazaxcman

AHAJIN3 YUCJIIEHHOI'O PEHIEHUA 3AJAYHN
TPEX®A3HOM HEU30TEPMHAYECKOM ®UJILTPAIINA

Hacmoswaa cmamuvsa nocésweHa nocmpoenuto u Ucciedo8aHuio YCmouuugoCmu U cXo0umMocmu
YUCEHHO20 MEmOo0a peulens 3a0ayu mpexghasHol Heu3omepMuieckoll Guibmpayuy ¢ y4enmom Kanui-
JAPHBIX CUTl, pA3PADOMAHHO20 8 PAMKAX 2PaHmMo8o2o npoekma Munucmepcmea o0pazo6anus u HaAyKu
Pecnybnurxu Kazaxcman AP08053189. Paccmampusaemas mooenb onucbléaem npoyeccyl, npomeKanuue
6 He(hmAHbBIX naacmax npu 00OvIYe MANCENOU Hedmu MemoooM NApoOmenio8o2o 6030eliCmaus Ha niacm.
Tocmanosra oughpepenyuanvroll 3a0auu OCHOBAHA HA 66E0EHUU 3AMEHbL NEPEMEHHBIX 2100ATbHO20 0A6-
JIeHUSA, NO3GONAIOUIell UCKTIOUUTNG SPAOUSHIN KANUTIAPHO20 0A8NeHUs U3 YpasHeHus Ons 0agnenus. /s
peutenust 3a0adu NOCMpoeH Yuciennvlil memoo. Tlonyuena anpuophas oyeHKka 8 IHepeemuieckoll Hopme,
8bIPANCATOWASL YCTNOUYUBOCTINE NOCHPOEHHOU CXeMbl NO HAYATLHLIM OAHHBIM U NPAGLIM YACMAM YPAGHe-
nuil. [lpeocmasnena meopema 0 cX00UMOCIU pewetust YUCIeHHOU cCXeMbl K peuleHulo ouggepenyuaisb-
HOUl 3a0auu.

Kniwouesvie cnosa: mpexgasznas neuzsomepmuueckas uivmpayus, 2n006anvhoe 0asieHue, cxoou-
MOCmb, YCMOU4UBOCHb.



