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GELFAND-LEVITAN INTEGRAL EQUATION FOR SOLVING COEFFICIENT
INVERSE PROBLEM

In this paper, numerical methods for solving multidimensional equations of hyperbolic type by the
Gelfand-Levitan method are proposed and implemented. The Gelfand-Levitan method is one of the most
widely used in the theory of inverse problems and consists in reducing a nonlinear inverse problem to a
one-parameter family of linear Fredholm integral equations of the first and second kind. In the class of
generalized functions, the initial-boundary value problem for a multidimensional hyperbolic equation
is reduced to the Goursat problem. Discretization and numerical implementation of the direct Goursat
problem are obtained to obtain additional information for solving a multidimensional inverse problem
of hyperbolic type. For the numerical solution, a sequence of Goursat problems is used for each given
v. A comparative analysis of numerical experiments of the two-dimensional Gelfand-Levitan equation is
performed. Numerical experiments are presented in the form of tables and figures for various continuous

functions q(x, ).
Key words: inverse problem, direct problem, hyperbolic type, Gelfand-Levitan equation, Goursat

problem, Numerical solution.

Introduction. The Gelfand-Levitan method is one of the most widely used in the theory
of inverse problems and consists in reducing a nonlinear inverse problem to a one-parameter
family of linear Fredholm integral equations of the first and second kind. Let us briefly
describe the achievements of scientific research in this area.

In work, Gelfand .M. and Levitan B.M. [1] proposed a method for reconstructing the
Sturm-Liouville operator from a spectrum function and provided sufficient conditions for a
given monotone function to be a spectral function of the operator. Krein M.G. [2] considered
the physical formulation of the string tension problem and theorems on the solution of the
inverse boundary value problem. Blagoveshchensky A.S. [3] provided the new evidence on
the theory of inverse problems for the string equation. The advantage of the new proof is
that it is simple and local (non-stationary).

A detailed review of numerical methods for solving equations of the Gelfand-Levitan
type is given in the work of Pariyskiy B.S. [4].
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In the monograph of Kabanikhin S.I. [5] proposed a new algorithm for solving the
Gelfand-Levitan equation, which involves the use of a sufficient condition for the solvabil-
ity of the inverse problem.

In the monograph of Romanov and Kabanikhin S.I. [6,7] a dynamic version of the
Gelfand-Levitan method is presented as applied to a one-dimensional inverse geoelectric
problem for the quasi-stationary approximation of Maxwell's equations.

Multidimensional Gelfand-Levitan equations were obtained in the works of Belishchev,
Kabanikhin S.I., Blagoveshchensky A.S. [8-10].

In the works of Bakanov G.B. [11-13] considered a discrete analog of the Gelfand-
Levitan method for a two-dimensional inverse problem of hyperbolic type.

In [14], gradient and direct methods for solving the Gelfand-Levitan equations were
numerically implemented.

One-dimensional and multidimensional methods for solving inverse problems for the
wave equation by the Gelfand-Levitan method lead to the numerical solution of Fredholm
integral equations of the first and second kind. In the work of Lavrentiev M.M. [16]
considered integral equations of the first kind.

In recent years, there has been a growing interest in approximate methods for solving
integral equations. There are several numerical methods for solving integral equations of the
first kind. Most of the works are based on projection methods, such as the Galerkin—Petrov
method, the Bubnov—Galerkin method, the method of moments, and the collocation method
[17]. One of the most attractive developments in recent years has been the use of wavelets as
basis functions in projection methods. The wavelet technique allows to create very efficient
algorithms compared to known regularizing algorithms. Various wavelet bases are used in
the papers [17-22].

Statement and solution of the two-dimensional coefficient inverse problem. We
consider a sequence of direct problems [2]

uf? =ul +ul) +q(x,y)u®, x>0, y [=T,n], t [RIk [Z] 1)
u®|_ =0, 2

u |- = h(y)3(x), (€)

TCIREITCIN. (4)

We assume that the trace of the solution of the direct problem (1) - (4) exists and can be
measured. In the inverse problem, it is required to restore a continuous function g(x, y) from
additional information about the solution of the direct problem

u®,y,t)= f®(y,t),ye(-m,x), t>0, keZ (5)

where R is the set of real numbers, Z is the set of all integers, 6 is the Dirac delta function,
k is some fixed integer, N(Y) =€" . Here and everywhere below, we assume that all the
considered functions are sufficiently smooth and 27 — periodic in the variable y.

The necessary condition for the existence of a solution (1)-(5) is as follows:

f©(y,0)=0.
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The generalized solution of the direct problem (1)-(4) is a piecewise continuous solution
of the integral equation

()(x y,t)= (y) x| % ([ E y,T)d&dT . (6)

Here 0(t) — the Heaviside theta function.
By analogy with the one-dimensional case, it follows from the integral equation (6)
that
u(x,y,t)=0, t<|x|, (xt) RAR, (7)

For t >|X| we have the formula

u(k)(xyy’t):m % I é:y (é:,y,Z')dggdZ', (8)

here (x,y,t) = {(E y, 1) stst-|x- E|} .

From formula (8) it follows that

(k)(x, y’|x|) :@ . (9)

Thus, to solve the direct problem in the class of generalized functions, we have the
Goursat problem (1), (9) which determines the classical solution of problem (1) - (4) [2].

Figure 1 — Scheme for solving the direct problem (1), (9)

A sequence of auxiliary direct problems is introduced [2]:
o =0 +of) +q(x,y)o™, x>0, ye[-n,n], teR, meZ. (10)

(m)
o™ (0, y,t) = e™3(t), a‘”

—(0y.)=0, (11)
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o™ | _=o™|_, . (12)

where

~ ) §
"0y x-0) =" fa(cy)ag x>0 13

Figure 2 — Area for solving the inverse problem (1) - (5)

Functions U (X, y,t) and f® (Y,t) with respect to the variable ¢. For X > |t| we have

@(k)(y t+x)+ £y, t—x)gj’zjf“"(t $)O™(x,y,8)ds=0.  (14)

Zxm=

For each fixed X>0 relation (14) is an integral equation of the first kind with respect to

the function ®(X, Y,t) , t e (—x, x) . Equation (14) is the Gelfand-Levitan equation.
Discretization of the two-dimensional Gelfand-Levitan equation. In the
Gelfand-Levitan equations (14), we replace the integral by the sum and for t=t;

j=-N,-N+1,..,0,..,N -1 N we obtain a system consisting of (2N + 1) equations with
M x (2N +1) unknowns ®™(X,¥,5;) ,m=12,..M ;i=-N,-N+1..,N-1N ;

i i fa (t; =)™ (x,y,5,)T= —%[f(k)(y,t,- +x)+ O =01 15)

m=li=—N
Equation (15) in matrix form can be written in the following form
Zme=f (16)

where Fn {f(k)(t _5)}

-wN, ,m=1,2, ..., M are square matrices of size 2N + 1.

N.

Search vectors and rlght part
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»™ :{Co(m)(x, y,si)}i:_W om=1,2,.., M. (17)

FO = {=0.5(f“(y,t; + )+ f(y,t; = X))}y - )

Further, we assume that m = 1, then formula (4) takes the form
N

Y, F9(t —s)a(x,y,s) 7= —%[f(k)(y,tj +X)+ FO>y =1, (19

j=—
Let us rewrite equation (19) in operator form
ARG =0 20)
For the numerical solution of the Gelfand-Levitan equation (19), the simple iteration
method (in the theory of ill-posed problems, the Landweber iteration method) is used

in combination with M.M. Lavrentiev regularization. Equation (20) is replaced by the
following correct equation

(kE +A®) o= 10 @)

where fy(k) =%+ u@, , E is an identity matrix, p is a positive parameter of M.M.
Lavrentiev’s regularization, @, is a trial solution, i.e. some approximation to the desired
solution.

Iterative process with regularization M.M. Lavrentiev will take the form

R ) -
n+l n o4 (IUE + A(k))a)n = f}/(k)
r .

The iteration calculation algorithm is as follows [2]: )
1. The initial approximation is set equal to the right side fy( >

b

2. The accuracy of the calculation ¢ is set, for the condition of the end of the iterative

process |&~)n+1 -—o,|<¢&;
3. The calculation is carried out according to the following iterative process

NN -
n+l n +(,L1E+A(k))a)n = f}/(k)‘
T

The works of many authors [3-10] are devoted to the numerical method for solving
coefficient inverse problems for hyperbolic equations.

Based on the Landweber iteration method for solving a two-dimensional coefficient
inverse problem of source recovery g¢(x, y), an efficient algorithm for numerical
implementation was developed and a program code was written. During a series of numerical
experiments, various functions ¢(x, y) were taken, which will be given below. The initial
approximation was chosen to be equal to the right side of the system of linear equations.
Numerical calculations have been made to find the desired function @ (X, Y,t) ,xe(0,x.) ,
y€(0,%.) and to restore the coefficient g(x, y) from it.
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During a series of numerical experiments, various functions ¢(x, y) were taken.
Figures 3, 4 show the results of numerical calculations by the Landweber iteration
method for e = 0,001 of the function

e
X, ¥) = ’
R (x-0.51)" +(y - 0.51)"
(X, y,x—0)=;(arctg X201 retg =22t ]
4(y—-0.51) y—051 y—051

which is found by formula (33). During the calculation in this example, the number of layers
n was taken equal to 10, the regularization parameter L =0,5 , X, =1 | £=0,000001 and

the following output data were obtained: error ”5) -@ l1p” =0,00031857757 | number of

iterations 245, amount of computer time 6.78 sec.

Figure 3 — Graph of the approximate solution of ¢(x, ) restored by the Landweber method,
atn=10,e=0,001

Figure 4 — Graph of the approximate solution of @(X, Y, X —=0) restored by the
Landweber iteration method, at n = 10, e = 0,001

The results of numerical calculations by the method of conjugate gradients for
e = 0,001 the functions ¢(x, y), @(X, y,x —0), which are given above. The number of layers
n = 10, the regularization parameter p = 0,5, x, = 1, € = 0,000001 and the following data
were obtained: error ”5) - 5)“(“ =0,000004144269 | the number of iterations 3, the amount

of computer time 29.25 sec.
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Numerical calculations are carried out using the square root method for e = 0,001 the
function q(X,y). ®(X,y,x—0), which are given above. The number of layers n = 10, the
regularization parameter 1= 0,5, x, = 1, € =0,000001 and the following data were obtained:
=0,000000014901161, the amount of computer time 4.05 sec.

error H&) - @,

Table 1 — Comparative analysis of the numerical solution of the two-dimensional GLE
equation by various methods with the number of grid nodes n = 10, u = 0,5,
€= 0,000001 for the function ¢(x, y) where e = 0,001

Number of Error rate Amount of
Methods . . ) Convergence
1terations "(I)T _ 6)np computer time

Landweber iteration 245 000031857757 6,78 sec. converges
method

Method of conjugate 3 0,000004144269 29,25 sec. converges
gradients

Quadratic root method - 0,0000000149011 4,05 sec. converges

The table shows that the results of the numerical solution of problem (17) - (21) by
various numerical methods show high accuracy.
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TEJb®AH/I-TEBUTAH UHTEIPAJIIBIK TEHJEYIH KOJIJAHBIII
KEPI KOD®UIUEHTTIK ECENTI IIEITY

Byn oicymvicma envpano-Jlesuman aodicimen eunepbonanvik munmi ken enuemoi menoeynepoi
wewyoiy canoblK 20icmepi YCblHbla2aH dHcaHe dcacanear. I envghano-Jlesuman a0ici kepi ecenmep meo-
PUSACBIHOA KeHIHEH KOLOAHBLIAMBIH 20IC O0IbIN MAOBLIAObL HCIHE CbI3LIKMbL emec Kepi ecenmi Oipinuii
JHCoHe eKiHwl meKkmi Cul3biKmulK Ppedeonvm unmezpaniovly meqoeynepiniy o6ip napamempii mooviHa
Kenmipyoen mypaovl. XKaanvlianean QyHKyusIap KiacblHOa KONemuemol 2unepoonaivly meyoey yulin
bacmankuvl-uiekmik ecen Iypca ecebine xenmipinedi. I'unepbonanviy munmi ken enuemoi Kepi ecennmi
wewty yuin Kocolmuia aknapam axy yuiin mypa I ypca ecebiniy Ouckpemu3ayuscol JHcaHe CaHoblK uewimi
anvinzan. Canowik wewim yuin ap bepineen y I'vpca ecenmepiniy mizoeei naiioananviiaovl. Exi enuemoi
Tenvpano-Jlesuman menoeyiniy candvly macipubenepine canpblcmulpmaivl manoay sxscacanovl. CaHobik
maorcipubenep apmypui y30ixcis q(x, y) QyHKyusnap yuin kecmenep mMer cypemmep mypiHoe YColHbLIAH .

Tyitin ce30ep: repi ecen, mypa ecen, eunepbonanvix mun, Iervgano-Jlesuman menoeyi, Iypcam
ecebl, CaHObIK Weim.
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UHTETPAJIBHOE YPABHEHUE I'EJIb®AHJIA-JTEBUTAHA J1JIs1
PEIIEHUSI KOD®P®UIIMEHTHOMN OBPATHOM 3AJIAYN

B pabome npeonoscenvl u pearuzo6ansl YUCIEHHbIE MEmMOoObl PeUleHUs MHO2OMEPHbIX YDAGHEHUL
eunepoonuueckoeo muna memooom Ienvghanoa-Jlesumana. Memoo [envghanoa-Jlesumana asisemcs
OOHUM U3 HaubONee WUPOKO UCNOLb3YEMbIX 8 MEeOPUU 0OPAMHBIX 3a0ad U 3aKIIOUACMCs 8 C6COCHUU He-
JIUHENHOU 00paAmMHOLL 3a0a4 K 0OHONAPAMEMPUYECKOMY CeMeUCm8y TUHEUHbIX UHMeSPAIbHbIX YPAGHEeH UL
Dpedzonbma nepeoeo u 6mopoco pood. B knacce 0606uennbix QyHKYUL HA4aIbHO-Kpaesas 3a0ada 0is
MHO20MEPHO20 2Unepoou1ecko2o ypagreHus ceooumcs K 3adaue 1ypca. Ilonyuenst ouckpemusayus u
YucieHHas peanusayus npamou 3a0avu 1ypca 0ns noryueHus OOnOIHUMeNbHO UHpopmayuu 0s peule-
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HUsL MHO20MEPHOU 0OpAmHOU 3a0auu 2unepooiIuyecko2o mund. Jis YUCIeHHO20 PeuleHus UCnob3yen-
¢ nocnedosamenvHocmy 3adad Iypca onsi kaxcooeo 3a0anHozo y. Ilposeder cpasHumenvbHvill aHaniu3
YUCTICHHBIX IKCNEePUMEHMO8 08yMepHo2o ypasHenus I envpanoa-Jlesumana. Yucnennvie sxcnepumenmol
npedcmasiiensl 8 gude madauy U PUCYHKO8 OJisk PA3TUUHBIX HENPEPbIHbIX QYHKYULL q(X, ).

Kntouesvie cnosa: obpamuas 3adaua, npsamas 3a0aua, 2unepoonruyeckuil mun, ypagrenue I envgpanoa-
Jlesumana, 3a0aua I'ypca, uucienHoe peutetue.



