UDC 004.01
https://doi.org/10.47533/2020.1606-146X.173

A. B. ASSETBEKOV

Kazakh-British Technical University,
Almaty, Kazakhstan
almar.asetbekov@gmail.com

PROGRESSIVE WEB APPLICATIONS CAPABILITIES TO BECOME
AN ALTERNATIVE TO MOBILE APPLICATIONS

These days, almost every successful company owns a web application for their business. Essentially,
companies try to develop a website that is easy to navigate, so that a user could have a great experience
regardless of a used device. But, a web app, even if developed to be used on any device, can be constraining
for a user as it does not have features that have been reserved to native apps. Thus, companies are forced
to develop a native application for their product and two applications are needed for two different OS
- 10S and Android - to reach all potential users and match the modern criteria of a successful product.
However, such a strategy of developing a web and two native applications are time and money consuming,
which is far from ideal from a business point of view.

In 2015, Google introduced Progressive Web Apps (PWA), which aims to close the gap between web
and native applications by combining the best features from web and native apps. In this article I am going
to describe several APIs that can make PWA feel like a native app.

Key words: progressive web applications, PWA, service worker, app manifest, API, mobile app, native
application

Introduction. Progressive web apps are web applications that behave and feel like a
native one. That is to say, PWA should have all the functionalities that a platform-specific
application has. It is done by implementing web-platform specific features such as service
workers and manifests with progressive enhancement and certain APIs.

A service worker is a script that a browser runs in the background, separate from a web
page acting as a network proxy. It intercepts any request and then decides whether it should
serve the resource from the cache via the Cache Storage API, from the network as normally
would happen without a service worker, or create it from a local algorithm. [1]

Figure 1 — Service Worker as a network proxy



18 Becmnux Hayuonanvhoti unsceneprou akademuu Pecnyonruxu Kazaxcman. 2022, Ne 3 (85)

The web app manifest is a JSON file that provides information about the application so
that it displays properly as a native app when installed. The basic file must contain an app
name, icon and URL that opens when the app launches.

These days technologies are evolving at a rapid pace, in particular web and mobile de-
velopment. Big companies implement new technologies with better approaches into their
applications/products. Thus, they set the bar higher for other companies to stay relevant and
successful. As products on the market get better in general, users’ demand grows as their
expectations from other products' capabilities. That is why it is vital to have a reliable and
up to date application.

In relation to the network connection, users are used to getting the information fast even
with an unreliable and poor connection. They tend to leave an application if the wait is too
long. For example, as page load times go from 1 second to three seconds, the probability of
a user bouncing increases by 32% and the probability goes up to 123% by 10 second loading
mark as illustrated in Figure 2. [2]

Figure 2 — The probability of bounce

Users' behavior and expectations vary when they use web and mobile applications.
They expect certain features from both types of applications. So, the goal is to make an app
that provides native-app experience in such a way that a user assumes he uses a mobile app
when in fact it is PWA.

Until the appearance of PWA, platform-specific apps have been the only ones with
features like push notifications, offline mode, idle detection, home screen installation and
so on. Even though not every platform-specific feature can be implemented into PWA now,
there are ongoing improvements in terms of new APIs that provide the capability to make
PWAs with native-app experience. All of the APIs are built with the web's secure, user-
centric permission model so that a user does not have to worry about his vulnerable data.

In the Main Part I am going to explain several platform-specific features that can be
implemented into PWA with the help of certain APIs.



Assetbekov A. B. Progressive web applications capabilities to become ... 19

Main Part. There are five features that are explained in this section. They are presented
in the following order:

1. A contact picker

2. Device Orientation and Motion

3. Idle detection

4. Content sharing

5. App shortcuts

A contact picker

A user expects to get access to his contact list whenever he uses a mobile app. This fea-
ture does not exist on web applications, but it is much needed in PWA. Therefore, Google
has created the Contact Picker API, which allows one-off access to a user’s contact informa-
tion with full control over the shared data.

Thus, use cases of the Contact Picker API are:

1. discovering a contact who uses a social platform;

2. selecting a contact to send an email;

3. making voice calls with voice over IP, which could get a phone number from a contact
list;

Security

A permission to use a contact list must be granted by a user every time when the request
to the list is made. This differs from native applications where a user grants access to a
contact list once. Additionally, there is no option to select all contacts to make sure that a
user selects only needed contacts.

The API is only available from a secure top-level browsing context. It means that to run
the code HTTPS is required. So, to develop locally a developer would need an SSH tunnel
as localhost uses an HTTP connection.

The Chrome team took these measures using the core principles defined in Controlling
Access to Powerful Web Platform Features for security reasons. [3]

Browser compatibility (Figure 3) depicts the main problem of the Contact Picker API
- Safari IOS does not support it yet. As it can be seen, only Android browsers have full
compatibility except Firefox for Android. Obviously, desktop browsers do not support this
API as a contact list only exists on mobile devices.

Device Orientation and Motion

Most mobile applications can rotate the display to work in landscape mode. The most
prominent example is YouTube where display rotation is the most common feature. There
are other mobile applications which highly rely on this functionality as it provides a better
UX.

DeviceOrientationEvent is an experimental Web API event which could be used to im-
plement display rotation in PWA.

Additionally, this event could be implemented with geolocation for turn-by-turn naviga-
tion.

There is another experimental Web API - DeviceMotionEvent. This event is suitable for
gaming and fitness applications, because it helps with character’s/person’s movement.

Coordinate system



20 Becmnux Hayuonanvhoti unsceneproi akademuu Pecnyonruxu Kazaxcman. 2022, Ne 3 (85)

Figure 3 — Browser compatibility of Contact Picker API

The Figure 4. represents a device coordinate frame and three values (alpha, beta, gam-
ma) in the frame. X, y and z are in the plane of the screen and are positive towards the right,
towards the top and out of hand side of the screen, respectively. Alpha, beta and gamma are
properties of the DeviceOrientationEvent.

c. d.

Figure 4 — Device coordinate frame.



Assetbekov A. B. Progressive web applications capabilities to become ... 21

The DeviceOrientationEvent returns rotation data, so that a developer knows
whether a device is leaning front-to-back or side-to-side and to which degree.
Therefore, the data allows a device to interactively respond to orientation changes.
The DeviceMotionEvent provides the speed of device positioning and orientation changes,
i.e. acceleration, and returns data about the rotation (in °/second).

The Device Motion Event includes four properties: acceleration, acceleration Including
Gravity, rotation Rate and interval.

The acceleration and acceleration Including Gravity properties are objects providing
data about acceleration on X, y and z axis, which represent the axis from West to East, from
South to North and perpendicular to the ground, respectively.

Rotation Rate corresponds to the same alpha, beta and gamma values described earlier.

Figure 5 — Browser compatibility of Device Motion Event.

Idle Detection

When a user does not use his device for more than a minute (if not changed manually),
the device goes into an idle mode. This mode means that a device is on but the screen is
off.

The Idle Detection API gives more flexibility to web development as it provides a user
(active or idle) and a screen (locked or unlocked) idle state. That is to say, developers can



22 Becmnux Hayuonanvhoti unsceneprou akademuu Pecnyonruxu Kazaxcman. 2022, Ne 3 (85)

Figure 6 — Browser compatibility of Device Orientation Event.

start or stop the execution of the particular code by looking at the idle state and, consequently,
provide a better UX.

The use cases of the API are the following:

1. Networking or messaging applications to see if someone is available at the moment
(online/away/offline);

2. Publicly used applications return to the home page if there is no interaction with the
application.

3. Updating a service worker when the app is not used.

There is one remark when using the API - a user has to grant the permission for the
API to be used. Otherwise, the idle detection will not work. The Chrome team has designed
and implemented the API this way for security reasons using the core principles defined in
Controlling Access to Powerful Web Platform Features[3].

Initially, idle detection was gated behind the notifications permission, but the Idle
Detection spec editors have decided to gate it behind a dedicated idle detection permission.
Referring to native applications, there is no need for a user gesture to grant the permission as
such applications have access to locked/idle states. So, the Idle Detection API implemented



Assetbekov A. B. Progressive web applications capabilities to become ... 23

in PWA is more transparent as it gives a choice to a user whether to allow the idle detection
or not.

Figure 7 — Browser compatibility of Idle Detection API.

Content sharing

Content sharing is one of the most used functionalities in native applications. It helps
users to save time by doing the minimal effort of clicking the share button and picking the
receiver.

Web Share Target API enables a web site to receive shared data from other sites or
apps. The goal is to allow PWA to appear in the Ul for picking an app to share to. This way
content could be shared from native to web apps and vice versa.

In order to use Web Share Target API web app manifest file must be updated with share
target entry so PWA is registered as a share target. A developer explicitly sets what kind
of data PWA will accept. The most common scenario is accepting data, links, and text.
Additionally, files could be accepted and some application changes as well.

Web Share API makes it possible for web apps to share links, text, and files to other
apps installed on the device to use the same system-provided share capabilities as platform-
specific apps.



24 Becmnux Hayuonanvhoti unsceneproi akademuu Pecnyonruxu Kazaxcman. 2022, Ne 3 (85)

For a progressive web application to appear in the sharing Ul among native applications
the PWA must be installed on a device. After installing a user can open any app that supports
share functionality and by clicking the share button a user will be prompted with a target
picker where the installed PWA will be displayed (Figure 8). Finally, the shared data will be
available in the PWA with the implemented Share Target API.

Figure 8 — Content sharing in PWA.

The Web Share API has two methods - navigator.share() and navigator.canShare().

Navigator.canShare() is used before navigator.share() to identify whether the data is
sharable or not.

Navigator.share() is used for sending the data to a share target. The method must be
called on a transient activation, for example a click on the PWA icon in the sharing Ul,
which means that the method cannot be called programmatically without a user gesture.
Navigator.share() is a promise-based method with a required properties object, which must
contain at least one of the following properties: title, text, url or files

App shortcuts

App shortcuts are a handy way to get access to frequently used actions. So, a user
can boost his productivity and facilitate re-engagement with an application. Shortcuts are
invoked by right-clicking the app icon on desktop or long-pressing the icon on a mobile
device.

This functionality used to be reserved to native applications, but now it is available for
progressive web applications as well.

Shortcuts are defined in the app manifest json file in shortcuts entry, an array of objects.
Each object must contain a name displayed in the context menu and a url within the applica-
tion. There are other optional fields:

1) Short name is used when there is insufficient space for a full name to be displayed;

2) Description is not used at the moment, but is going to be exposed to assistive
technology;



Assetbekov A. B. Progressive web applications capabilities to become ... 25

Figure 9 — Browser compatibility of Web Share API.

3) Icons are used for shortcut representation in the context menu;

Best practices:

1) Order app shortcuts by priority. The available number of shortcuts varies depending
on the platform from 3 in Chrome 92 for Android 7 to 10 in Chrome and Edge on Windows.
So, the crucial shortcuts should be first in the array.

Figure 10 - Browser compatibility of shortcuts API.



26 Becmnux Hayuonanvhoti unsceneproi akademuu Pecnyonruxu Kazaxcman. 2022, Ne 3 (85)

2) Use distinct names. As icons are optional there could be a situation when they are
absent. Therefore, it is unsafe to rely on icons to describe what kind of app they represent.

3) Analyze shortcuts usage. To provide a better UX it is better to track what shortcuts are
used more frequently than others.. This way the first point will be satisfied as well.

Conclusion. It is not necessary for a progressive web application to have all the
native functionalities to work properly. That is why transforming a web application into
a progressive web application is a gradual process, which allows developers to integrate
native-like features one by one without breaking the application. The APIs described in the
article have shown that features which have been reserved to native applications are now
available in web applications due to certain APIs. All of the APIs are designed securely
using the core principles defined in Controlling Access to Powerful Web Platform Features.
[3] In most situations a user gesture is required to use the API for PWA, which differs from
native apps where it is not needed due to the implementation differences. In other respects
PWA feels like a native app, even though not every browser provides support for interfaces
and methods of the APIs or they are in an experimental stage. So, a user experience can vary
from browser to browser, which is the most apparent PWA issue. PWA is still an evolving
technology and it will take time for browsers to catch up and be in sync with one another.

REFERENCES

1 Service Workers: an Introduction (2021). https://developers.google.com/web/fundamentals/
primers/service-workers

2 Find out how you stack up to new industry benchmarks for mobile page speed (2018). https://
www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-
benchmarks/

3 Controlling Access to Powerful Web Platform Features https://chromium.googlesource.com/
chromium/src/+/1kgr/docs/security/permissions-for-powerful-web-platform-features.md

4 A contact picker for the web (2021). https://web.dev/contact-picker/

5 Contact Picker API (2021). https://developer.mozilla.org/en-US/docs/Web/API/Contact
Picker API

6 Detecting device orientation (2022). https://developer.mozilla.org/en-US/docs/Web/Events/
Detecting_device orientation

7 Device Orientation & Motion (2019). https://developers.google.com/web/fundamentals/native-
hardware/device-orientation

8 Detect inactive users with the Idle Detection API (2021). https://web.dev/idle-detection/

91sChrome’sIdle Detectionreally athreatto privacy? (2021). https://scottiestech.info/2021/10/05/
is-chromes-idle-detection-really-a-threat-to-privacy/

10 Idle Detection API (2022). https://developer.mozilla.org/en-US/docs/Web/API/Idle
Detection API

11 Integrate with the OS sharing Ul with the Web Share API (2021). https://web.dev/web-share/

12 Receiving shared data with the Web Share Target API (2021). https://web.dev/web-share-
target/

13 Web Share API (2022). https://developer.mozilla.org/en-US/docs/Web/API/Web_Share API

14 Web Share Target API Explained (2020). https://github.com/w3c/web-share-target/blob/main/
docs/explainer.md

15 Get things done quickly with app shortcuts (2021). https://web.dev/app-shortcuts/

16 Shortcuts (2021). https://developer.mozilla.org/en-US/docs/Web/Manifest/shortcuts



Assetbekov A. B. Progressive web applications capabilities to become ... 27

A. b. OCETBEKOB

Kazaxcman-bpuman mexuuxanvix ynugepcumemi, Aimamsi, Kazaxcman
almar.asetbekov@gmail.com

MOBMJIBAI KOJTAHBAJIAPT A BAJTIAMA BOJIY YHITH
INPOI'PECCHUBTI BEb- KOJIIAHBAJIAPBIHBIH MYMKIHJAIKTEPI

Byn kynoepi apbip Oepnix mabvicmvl KOMRAHUAOA 63 OU3HECIHEe APHANRAH 8eD-KOCBIMULACHL Oap.
Heczizinoe, KoMnanusnap nanoanianbliean Kypoliebled Kapamacma natoaianyusbl mamawa mayicipubece
ue 6OYbl YU apiay oyal 6ed-cammol Jeacayea muipvicaovl. bipax éeb-bazoapiama, minmi ke3 Keieen
KYpblI2blod NAtOAlany2a apHai2an 60ica od, natuoaiaHyubiibl wekmel anadvl, cebedi oHblH MOOUIbOT
Konoanbanap yuiin cakmanean MyMKiHOikmepi dcok. Ocviiatiua, KoMnauwusiap 6apivlk aneyemmi
nauoanaHywbLIapaa Ko JCemKizy JHcoHe madulcmbl OHIMHIY 3aMaAHayU Kpumepuiiepine catikec Keuy yiulin
exi mypni OJK, 10S scane Android, ywin 03 onimi yulin dcepeinikmi KoCoIMuanul azipieyee maxcoyp. He-
2eHMeH, 6eb nen exi MoounbOi KoculMuiansl a3ipaeyoiy OYa cmpamezusacsl yaKuim neH aKuianvl manian
emeoi, Oy 6uzHec MypeblCblHaH UOealOaH alblC.

2015 sncvinwt Google exeyiniy 0e eH Hcakcvt MyMKIHOIKmMepiH OIpIkmipy apKblivl 6€0 dicone MOOUIbOT
KONOAHOANAp apaculHOazbl auakmslKmol scooea basvimmanzan Progressive Web Apps (PWA) ycoinoul.
Byn makanaoa men PWA-uvl mobunvoi Konoanbasa yxcama anramoin oipuewe API cunammaiimein 6ona-
MbIH.

Tyitin ce30ep: npoepeccusmi eb-Kocvimumanap, PWA, cepsuc kvizmemxkepi, konoanba manugecmi,
API, Mobunv0i Kocvimuia, sncepinikmi Konoanoa.

A.b. ACETBEKOB

Kaszaxcmancko-bpumanckuti mexuuyeckuil ynugepcumem, Aamamest, Kazaxcman
almar.asetbekov@gmail.com

BO3MOKHOCTH ITPOI'PECCUBHBIX BEB-IIPUJIOKEHU
CTATb AJIBTEPHATUBOI MOBWJIbHBIM IPUJIOKEHUSAM

B nawu Onu noumu Kaxcoas ycnewndas KOMnanus eiaoeem 6ed-npunodicenuem 0 coe2o dusneca.
Ilo cymu, xomnanuu nvimaiomes paspabomams 6e6-caiim, Ha KOMOPOM 1e2KO OPUEHIMUPOBAMbCSL, UMO-
0bl nonb306aMens Mo2 NOIYHUMb OMAUUHBLIL ONbIM, HE3AGUCUMO OM UCNONb3YeMo20 ycmpoticmea. Ho
6eO-npunodicenue, oadxice eciu OHO pazpabomano O UCHONb308AHU HA TI0OOM YCMPOUCMEe, MOdiCent
02PaHUYUBAMb NONL30BAMENA, NOCKONLKY OHO He umeem GyHKyull, Komopule Obliu 3ape3epeuposannvl Ojis
HAMuGHBIX npuaodicenuil. Takum o6pazom, KOMRAHUU BLIHYHCOEHbl pA3pabamuvléams HAMUEHOE NPUTLO-
JIceHue 01 c80e20 NPOOYKMa u Heobxooumo 06a npunodcenus ons 08yx pasueix OC, 10S u Android,
4UMoObl OXEAMUND 6CEX NOMEHYUATLHBIX NOTb30GAMENEL U COOMBEMCMBO8AMb COBPEMEHHBIM Kpumepu-
Am yenewnoeo npooykma. Oonaxo maxkas cmpamezus paspadomxu 6e6a u 08X HAMUBHBIX NPULOICCHULL
mpebyem epemenu u 0enee, 4mo 0aileKo He UOCAbHO ¢ MOYKU 3peHust buzneca.

B 2015 200y Google npeocmasun npoepeccusrnuvle 6eb-npunogicenus (PWA), yenvto komopuix aeis-
emcesi COKpawjenue paspuléa Mencoy 6€0-nPUiLONCEHUSMU U HAMUSHBIMU NPUTLONCEHUSMU 3a cuem 00beou-
HeHus Tyuux QyHKyuti uz oboux 6udos. B cmamve onucamno neckonvko API-unmepgpeticos, komopule
moeym coenamv PWA noxooicum na namusnoe npuiodicenue.

Kniouesvie cnosa: npozpeccusnvie seb-npunoscenus, PWA, cepsuc-eopxep, manugecm-npunodxicenus,
API, mobunvroe npunodicenue, HAMUBHOE NPUTOANCCHUE.



