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SIGNS OF STABILITY OF AQUATIC ECOSYSTEMS
IN MATHEMATICAL MODELS

To date, various data on water resources have been accumulated, but hydrobiological and
hydrochemical indicators remain available to assess the current state of aquatic ecosystems, which can
be the basis for assessing the environmental situation within the water body. Systematization of multi-
vear and diverse data on the lakes and rivers of the country, the use of mathematical tools for assessing
and forecasting the state of the aquatic ecosystem is impossible without the use of information and
communication technologies. Quality mathematical modeling of aquatic ecosystems and the development
of information and analytical system for the study of aquatic ecosystems is an urgent task, including
databases of various-quality data on the water body and its ecosystem, data management and processing
tools, as well as a set of mathematical models for the functioning of the water body ecosystem.

Research is based on information technology, statistical data processing, and mathematical modeling.
Mathematical models are based on systems of differential equations, solutions are sought with the help
of own computing programs and software suites (Maple, Matlab, Mathematics, etc.). When possible,
modeling includes analytical studies of the properties of solutions, primarily this concerns stationary or
spatially homogeneous solutions, as well as asymptotic properties of solutions. The lower trophic levels
of the water body ecosystem are studied, as this determines the functioning of aquatic ecosystems. The
species composition of phytoplankton is an indicator of the ecological state of the water body. Based on the
quantitative characteristics of phytoplankton, the bioproductivity of the aquatic ecosystem is calculated.
The physical and chemical characteristics of water allow drawing conclusions about the pollution of the
water body and the composition of mineral nutrition for phytoplankton.

Key words: mathematical modeling, information-analytical system, aquatic ecosystem, database,
phytoplankton

Introduction. At present, all aquatic ecosystems are subject to varying degrees of
anthropogenic stress due to global processes taking place on the planet. The analysis of the
effects of such an influence is difficult but important for the development and change of the
natural system. Using mathematical models is reasonable to carry out such an analysis.

The first exciting scientific results in mathematical ecology were obtained in the twen-
ties and thirties of the last century: it should not go unmentioned the works of A.V. Kos-
titsyn [1], related to hydrobiology, and as of the second half of the twentieth century - the
works of S.E. Jorgensen, M. Strashcraba [2], considering the issues of mathematical model-
ing of freshwater ecosystems, V.V. Menshutkin [3] — considering the issues of simulation
modeling of aquatic ecosystems, the works of the scientific school of the academician L.I.
Vorovich [4], devoted to the mathematical modeling of ecological and economic systems,
etc. In general, the considered works developed conceptual approaches to the mathematical
description of the processes of life of aquatic organisms and aquatic ecosystems commu-
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nities (descriptive models), qualitative models (clarifying the dynamic mechanism of the
studied process and making it possible to reproduce the observed dynamic effects in the be-
havior of the system); simulation models of specific complex systems, taking into account
all available information about the object (and allowing to predict the behavior of systems
or solve the optimization problems of their operation) [5].

Modeling is one of the most important methods of scientific cognition, using which a
model (conditional image) of the research object is built. Its essence is that the relationship
of the studied phenomena and factors is presented in the form of specific mathematical
equations. The process of building a mathematical model includes the following typical
stages [6]:

— formulation of the modeling objectives;

— qualitative analysis of the ecosystem based on these objectives;

— formulation of laws and plausible hypotheses regarding the structure of the ecosystem,
the mechanisms of its behavior in general or individual parts (when self-organized, coputer
"finds" these laws);

— identification of the model (determination of its parameters);

— verification of the model (verification of its functionality and assessment of the degree
of appropriateness to a real ecosystem);

— study of the model (analysis of the stability of its solutions, sensitivity to changes in
parameters, etc.) and experiment with it.

Many processes in water bodies have not yet been studied in sufficient detail. The
processes of study continue, followed by and together with meaningful cognition there
comes information support and formal analysis in the form of data processing, mathematical
modeling.

The development of mathematical methods of environmental forecasting is necessary
both for the optimization of environmental management and for the serious scientific
substantiation of programs in the field of environmental quality management and nature
protection. Mathematical models of aquatic ecosystems allow us to describe non-equilibrium
dynamic processes in hydrobiocenoses under various external influences, such as changes in
water temperature, surface illumination, water or biogenic load, meteorological conditions.
The building of such models requires a large amount of information about the parameters
of geophysical, geochemical, biological, and other natural processes, the comprehension of
which is impossible without the involvement of modern information technologies [7, 8].

Materials and methods of the study. The use of the tools for mathematical modeling
of surface water quality is explained by the need to assess the quality of surface water.

Dynamic models of biological systems adapted to aquatic plant microorganism
communities were systematized and analyzed. Such qualitative analytical models of the
dynamics of aquatic ecosystems describe the mechanisms of functioning of ecosystems:
changes in the state of the aquatic environment due to physicochemical transformations, the
dynamics of the living component of the ecosystem (biological community).

The body. Outcomes. When studying aquatic ecosystems, problems arise in the
complexity and diversity of the processes studied. These difficulties are compounded by
the inaccuracy of available data and the lack of information at all. Nevertheless, modeling
under such conditions is possible and even necessary. Without models, the quantitative
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characteristics of processes cannot be assessed more or less satisfactorily. And the fact is
that the data obtained while different field surveys are often not well consistent with time,
space, measurement methods, etc. For answers to questions about the functioning of a large
aquatic ecosystem, one can not do without mathematical modeling [9].

Multiple coherent models, rather than one, can be used to improve the modeling of
aquatic ecosystems. Start with some idealized, closed models, then move to open ones,
possibly more appropriate to real objects. Let us describe one implementation of such an
approach [10].

First, we build so-called closed ecosystem models. Closedness is understood as a closed
state of a model, quantity. It relates only to the modeled characteristics and is conditional in
nature, in contrast to the closedness or isolation of the ecosystem itself [11].

Having considered the properties and modified the closed models, it is necessary to
move to quantitatively open models. The solution of open models is calculated using the
properties of closed model solutions, such a transition is possible. The open model becomes
appropriate. However, it is necessary to build a set of models interconnected for the selected
ecological system. In short, they must be coherent.

Let the state of the ecosystem at time ¢ be described by an n-dimensional vector x(?),
the components of which are the essence of the biomass or mass of the isolated blocks of
the ecosystem. We build the model on the basis of a self-sustained system of differential
equations of the approach, formula (1) [10, p. 1401]:

oX

—=f(x,a

5= Txa) (1)
Parameters of vector a, the content of which is unknown or inaccurately determined.
Let us write another model describing the same ecological system, expression (2):
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where y — is a vector of biomass, b — unknown parameters.

The studied object is the same and the vectors x, y have the following relationship:

h(x,y,c)=0 )

¢ — unknown or inaccurately known set of parameters [12].

Shall the parameters, structures, and solution be coherent, it can be determined that the
models are coherent. In the works of Doctor of Physics and Mathematics, Professor A.I.
Abakumoyv, these concepts are formalized: first, he calculated the complete derivative g—h

t
across the solutions of the systems of equations (1) and (2) and found the parameters a, b, ¢
from the condition of the proximity of this derivative to zero, expression (4) [12, p.1403]:
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Where |||| denotes the norm in the space of measurable square-integrated functions.

Condition (4) means coherence of velocities, phase variables, not the x, y variables them-
selves, as recorded in condition (3). At the same time, we make the models coherent not
only in solutions of ordinary differential equations but also in some set of changes in the
variables x, y. So, formally, the coherence of the models is determined by condition (4) to
select the parameters a, b, c. However, the choice of a set of variable parameters is informal,
to a large extent, it is determined by the content characteristics of the models [12, p.16].

Discussion. Within the framework of a multi-model approach to the study of natural
biosystems, closed and open models, models with and without regard to the internal
state of organisms, are considered. In closed models there is a continuum set of positive
equilibrium solutions, in open models there is a finite set of isolated non-negative
equilibrium solutions. In models without taking into account the intracellular content of the
substance, it is possible to prove the stability of equilibrium solutions, including using the
signs of structural stability (sign-stability). In models with regard to intracellular nutrient
content, this can be done with some limitations, although on the basis of computational
experiments there remains an idea of the correctness of the stability properties for this
group of models as a whole.

Signs of stability of aquatic ecosystems in mathematical models have been identified: the
properties of sustainability of solutions are model signs of stability of aquatic ecosystems.

Conclusion. In conclusion, it should be noted that in order to study aquatic ecosystems
and communities of water organisms in detail, it is necessary to use a set of mathematical
models for the same object. This determines the effectiveness of using the information at
our disposal. Data on aquatic ecosystems are collected from a variety of sources and all of
these data can be collected and applied in a set of coherent models.

The stability properties of solutions are model signs of stability of aquatic ecosystems.
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MATEMATHKAJBIK MOJEJBAEPIE CY
YKOKYMNEJEPIHIH TYPAKTBLIBIFBI BEJTLJIEPI

Kasipei  yageimma cy pecypcmapvl  mypanvl  mypai  0epekmep  JCUHAKMAAAH, O0e2eHMeH
cy 9Kodcylienepiniy  azbiMOagvl  HcaOaublH  6a2andy ywiH Koaicemimoi napamempiep  00nvin
2UOPOOUOTOCUATBIK JICoHe 2UOPOXUMUAILIK KOpcemKiumep 601uin maodwvliadsl, 01ap CYKOUMAaniapul
iwinoe2l SKONO2UATBIK Hca0auobl baganay yulin He2iz 6oaa anaovl. Enimizoiy kendepi men e3endepi ny-
Panvl Kon JAculIObIK Jcane ap mypii oepekmepoi Jcylieney, aknapammoulk-KOMMYHUKAYUATBIK MEXHOL0-
2UANAPObl NANOANAHOAU, CY IKOHCYUECIHIY Hea20atiblH 6azanay dHcane 6ouxcay yulin Mamemamuraibly
annapammapowl Konoany mymkin emec. Cy dKodiCylienepin canaivl MamemMamukanbly MoOerboey JHcone
cy oKoxcylienepin 3epmmeyoiy aKnapammulk-aHATUMUKANGLIK JICYUecin 0amblmy ¢y KOUuMacvl MeH
OMbBIHY IKOJICYUECT Mypanvl apmypai canaivl Maaimemmep 0a3acvl, oepekmepoi backapy dicane onoey
KYpanoapuln, cOHOQU-aK Cy IKONICYUECIHIY JICYMbIC amKAPYbIHbIY MAMeMamuKanislk MoO0enbOepitiy
KeuleHin KaMmumuli o3exmi macene oonvin mabwinadwvl. Cy dKodicylienepin cananivl MamemMamuKaibli Mo-
0envoey HcaHe Cy IKOXHCYlenepin 3epmmey iy aknapammblK-aHATUMUKALbIK HCYUeCiH 0aMbIny €y KOUMAChl
Mel OHbIH IKOJACYUECT Mypaivl pmypai canaivl Maaimemmep 6a3acvii, depekmepoi backapy scane oHoey
KYPANOapuvlH, COHOAU-AK CY IKOHCYUECTHIH HCYMbIC ICMeYiHiy MameMamuKaniblk MoOelbOepiniy KeueHiH
KAMMUMbIH 03eKmi Macene 601bin madwvliaobl.

3epmmeynep axnapammulx mMexHONO2UANAPEA, OepeKkmepoi CMAMUCMUKAILIK oHoeyee JicaHe
Mamemamukaivik mooenvoeyee Heeizoenzen. Mamemamuxanvik mooenvoep oupepenyuanovik meyoeyiep
Jcytiecine Hezizoeneen, wewimoepi dxcexe ecenmey 6a20apiamaiapvl MeH KOMNbIOMEPLIK naKemmepiniy
(Maple, Matlab, Mathematics sicone m.0.) komezimer uewtineoi.

Mywmkindizcinute, mooenvoepie wewinoep Kacuemmepine aHaIUMUKAIbIK 3epmmeynep rHcypeisined,
eH anobiMeH OYIl CmayuoHapIblK Hemece KeHicmikmezi Oipmexkmi wiewimoepee, COHOail-ak ueuimndepoiy
acumMnmomukanvly Kacuemmepine xamuvicmol. Cy KOUMANapoibly SKOICYUECiHiY MOMEH2] mPoPUKanblK
Oeneetlnepi 3epmmenedi, cebedi OYi Cy IKONCYUENEPIHIY HCYMBICOIH AHBIKMAUObl. DumonianKmoHHblIH
MYPIK KYpambl €y KOUMACHIHbIY IKONOLUANBIK, AHCALOAbIHBIY UHOUKAMOPbL O0NbIN MAdbLIAObL.

DumoniaHKmMOHHbIY CAHObLK CURAMMAMALAPbL He2I3IHOE CY IKONCYUECIHIY OUONOSUSTIbIK OHIMOLLIZ
ecenmenedi. CyObly QUIUKA-XUMUATBIK CUNATNIMAMATAPLL C)Y KOUMAAAPOLIH TACMAHYbl MEH (UmMOniaH-
KIMOH YUIH MUHEPANIObL MAMAKMAHY KYPAMbL NYPAIbl KOPLIMBIHObL HCACAY2A MYMKIHOIK Gepeo.
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Tyiiin coe30ep: mamemamukanblk Mooenvoey, aKnapammolk-aHalumuKaibly Jcylie, Cy IKoACyleci,
Odepekmep Kopbl.
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HPU3HAKHU CTABUJIBHOCTHU BOJAHBIX 9KOCUCTEM
B MATEMATUYECKUX MOJIEJIAX

Ha cecoonsiunuil denv HAKONJIEHbL PA3IuuHble OAHHBIE 0 BOOHBIX PECcypcax, OOHAKO OOCHYNHbIMU
napamempamu 07 OYeHKU MeKYWe20 COCMOSIHUI 6OOHbIX IKOCUCTEM OCIMAIOMCs 2UOPOOUOTO2UHeCKUE
U 2UOpoOXUMUYECKUe NOKA3AMeNl, KOmopblie MO2yn Oblib 0CHOBOU Olisl OYEHKU IKONO2UYECKOU CUmya-
yuu euympu 6oooema. Cucmemamusayusi MHO2OAEMHUX U PA3HOOOPA3HBIX OAHHbIX 00 03epax U peKax
cmpanul, NPUMEHeHUe MAMeMamu4eckux annapamos OJis OYEeHKU U NPOSHOZUPOBAHUSL COCMOAHUL BOOHOU
9KOCUCTNEMBL HEBOIMOIICHO O€e3 UCHONb308AHUS UHPOPMAYUOHHO-KOMMYHUKAYUOHHBIX mexHonocuil. Ka-
yecmeennoe Mamemamuideckoe MoOeiuposanue 600HbIX sKocucmem u paspadbomra Hnpopmayuonno-
AHATUMUYECKA CUCTNEMA UCCLe008AHUST BOOHBIX IKOCUCEM SGIACMCS AKMYAIbHOU 3a0adell, 6KI04aio-
wetl 6a3bl PA3HOKAYECMEEHHBIX OAHHBIX 0 6000EME U e20 IKOCUCTeMe, CPeOCMEa YNPAaGLeHus. OAHHbIMU
U Ux 0O6paboOmKU, a MAKICe KOMIIEKC MAMEMAMUECKUX MoOenell PYHKYUOHUPOSAHUSL IKOCUCTEMbL B0~
ooema.

B ocnogy uccnedosanuii nonodxicervl UHGOPMAYUOHHBIE MEXHOIOUL, CIMAMUCTIUYECKAs 00pabomKka
OaHHbIX U Mamemamuyeckoe moodenuposanue. Mamemamuyueckue Mooenu OCHO8AHbL HA CUCEMAX Ough-
hepenyuanvHbix ypagHeHuil, peueHis Uymcs ¢ NOMOWbIO COOCMBEEHHBIX GLIYUCTUMETbHBIX NPOSPAMM U
BBIYUCTIUMENLHBIX KOMRbIomepHbIX nakemos (Maple, Matlab, Mathematics u m.o.). Ilo éozmodicnocmu 6
MOOESIX NPOBOOSIMCSL AHATUMUYECKUE UCCTEO08AHUsL CEOTICE PEeUleHUll, 8 NePEYIo 0Yepedb Mo Kacaem-
¢ CMAYUOHAPHBIX UL OOHOPOOHBIX O NPOCMPAHCNEY PEUEeHUL, d MAKHCE ACUMNIMOMUYECKUX CEOUCNE
pewenuil. Hccnedyomes HudicHue mpoguueckue yposHu IKOCUCIEMbl 6000eMA, MAK KAK IMUM ONpeoeisi-
emest (PYHKYUoHUposanie 800HbIX IKocucmem. Buoosoil cocmas umoniankmona aeiaemecs uHOUKamo-
POM IKONOSUYECKO20 COCMOSIHUS 6000eMa. Ha 0cHO8e KoMuuecmeenHbIX Xapakmepucmuk Qumoniankmo-
Ha paccuumvleaemcst OUOnPOOYKmMuEHOCHb 600HOU dKocucmembl. DUUKO-XUMULECKUE XAPAKMEPUCTIUKUL
6000l NO3BOIAION COENANMb BbIBOOBL O 3ACPSAZHEHUU B000EMA U COCNABE MUHEPATIbHO20 NUMAHUS 05 (Pu-
MONNAHKIMOHA.

Kniouesvle cnosa: mamemamuyeckoe MoOenuposanue, UHOOPMayuoHHO-aHATUMUYECKAs CUCEMA,
600Has DKOCUCmeMd, 6a3a OAHHLIX, YUMONIAHKIMOHN.



