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GREEN’S FUNCTION OF A BOUNDARY VALUE PROBLEM
FOR A SECOND-ORDER DIFFERENTIAL EQUATION WITH INVOLUTION

A boundary value problem for a second-order differential equation with involution in the second
derivative is considered. The existence of linearly independent solutions of the studied equation is
established. The definition of the Greens function is given. The existence of eigenvalue problems for
eigenvalue problems is proved. The Green's function is constructed in the case of a Dirichlet-type
problem.
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Introduction. In this paper, we study some spectral properties of boundary value
problems for a second-order differential equation with involution in the second derivative.
The obtained results are formulated for the case of simple boundary value problems, although
they are valid in the case of general boundary conditions. Let us consider the equation:

Ly =-y"(x)+ay”(-x)+q(x)y(x)=0, ~1< x<1, M)

where -1<a <1, q(x) EC:ﬂ—l,l] . Equation (1) contains an involution transformation of
the following type (Sy)(x) = y(—x) for any function y(x) El;(-l, 1) .

In the scientific literature there are many works devoted to various problems of the
theory of differential equations with involution. Bibliography on this subject can be found
in monographs by D. Przeworska-Rolewicz [1], J. Wiener [2], Alberto Cabada and F. Adrian
F. Tojo [3]. Despite this, spectral aspects for differential equations with involution are still
poorly studied. Spectral problems for the first-order equation with involution were first
studied in the work of T.Sh. Kalmenov [4]. The problems for the first-order equation with
involution were also studied in the works of A.P. Khromov [5,6] and A.G. Baskakov [7].
Spectral problems for the second-order differential equations with involution are the subject
of works [8-14].

In [12], [13], [15], the questions of the basis property of eigenfunctions of the boundary
value problems for the second-order differential equations with involution were studied
using the Green’s function for the studied problems. However, the properties of the Green’s
function of boundary value problems for the second-order differential equations with
involution are not fully formulated, as was done in the case of boundary value problems for
ordinary differential equations [16]-[17].

Green’s function of the boundary value problem. Consider a second-order
homogeneous differential equation with involution in the second derivative

y”(x)+ay”(=x)+q(x)y(x)=0 (1)
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with coefficient g (x) E(Zﬂ—l,l) . As in the case of ordinary differential equations, equation
(1) satisfies the following

Theorem 1. The homogeneous differential equation with involution (1) has two linearly
independent solutions.

Proof. Note that equation (1) has a non-local character, as it connects the values of the
unknown function at two points. It is known from the theory of ordinary differential equa-
tions that the existence theorems are of a local nature. Equation (1) becomes local in a small
neighborhood of the point x = 0. Therefore, the existence and uniqueness theorem for the
solution of the Cauchy problem must hold for it. This fact was proved in the work of M.A.
Sadybekov and his followers [18].

Consider for equation (1) the Cauchy problem with the initial data y (0) = a,,, y'(0) = a,,,
y(0)= a,, Y'(0)= dy, . We denote the corresponding solutions by yl(x), yz(x) . As
a; 4

a a #0 is the Vronsky determinant of these solutions, then these solutions are lin-
21 22

early independent. The theorem has been proved.
It is not difficult to check that the general solution of Eq. (1) has the form

y(x) =y, (x) +eoy, (x) - )
For simplicity, consider equation (1) with antiperiodic boundary conditions
y(=1)=-y(@).y'(-2)=-y'(1) . 3)

The solution to the boundary value problem (1), (3) is a twice continuously differen-
tiable function y(x) ECfI[—l, 1] , satisfying equation (1) and boundary conditions (2). It may
turn out that the boundary value problem (1), (3) does not have a nonzero solution. Then
there may exist such a function G (X,t) that the following conditions are satisfied:

1) the function G (x,t) is continuous for X,t € [—1, 1] ;

2) the function G (x,t) has a discontinuous first derivative with respect to x for x # ¥t
for fixed ¢ and

G/(—t-0,1)-G/(-t+0t)=a1-0a?) ",
G(t-0,t)-G;(t+0,t)=(1-?) ",

3) the function G (X,t) has a second derivative with respect to x for
xe[-1,-t)U(-t,t)U(t,1] , satisfies equation (1) and boundary conditions (3).

The function satisfying these three conditions will be called the Green’s function of the
boundary value problem (1), (3). The following theorem is valid.

Theorem 2. The boundary value problem (1), (3) has a unique Green’s function if it has
only a trivial solution.
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Proof. According to Theorem 1, the boundary value problem has a general solution (2).
By definition, the Green’s function satisfies equation (1) on each of the sets [-1,—t) , (—t,t) ,
(t,1] . In the interval [~1,~1) it is written as

G(xt)=ay (x)+a,y,(x), ~1sx<-t.
In the intervals (~t,t), (t1] it has the forms
G(xt)=hy, (x)+b,y,(x), ~t<x<t,
G(xt)=cy,(x)+c,y,(x), t<x<1.

According to condition 1) in the definition of the Green's function we will have the
following equalities

ay; (~t) + &y, (-t) - by, (-t) by, (-t) =0, “
byy, (t) +b,y, (1) - ¢y, (t) - ¢, v, (t) = 0.

According to condition 2) in the definition of the Green’s function we get

a,y;(—)+a,y; (~) = by (~t) ~b,y; () =a(1-a) ",

()
-1
byy; (1) +b,; (1) - ey (1) - c,y; (1) = —(1- )
Equations (4), (5) can be rewritten as
Yllyl(_ )+ Y12Y2 ( t)
4 (6)
Ynyl( )+712 ( t) ( ) J
YaYi (t) V%Y, (t) %
-1
Y21Y1(t)+722y (t)= ( ) ,
where
n=8-0,7,=8,-b, v, =b—-C,7,=b-C, ()
Equalities (6), (7), respectively, imply the uniqueness of the pair of numbers 2, A, and
A,,» A, To prove the uniqueness, we use the boundary conditions (3)
&Y, (_1)"' Y, (_1)+ Gy (1)+ C,Y, (1) 0, 9)
3y, (-1)+a,y; (-1)+cy/ (1) +c,y; (1)=0.
Then from (8) we get

A =C YtV @, =CHY, HYgy,.

Then equation (9) can be rewritten as
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G (Y1 (_1) +Yy (1)) +C, (yZ (_1) +Y, (1)) = _(711 + 721) Y1 (_1) - ('le +YV ) Y, (_1)’
C, (yl/(_l) + yl,(l)) +C, (Y£ (_1) +Y; (1)) = _(711 + Yzl) YI(_]') - (712 +Y2 ) Y (_1)'
The boundary value problem (1), (3) has no nonzero solutions. That’s why
(v (-2)+ v, ()% 0 - (Y2 (-2)+ Y2 (1)) 0 (y;(=1)+ ¥/ (1)) # 0 (y; (~1)+ y5 (1)) %0 - Due
to the linear independence of the boundary forms, the determinant of the last system of
equations is nonzero. Therefore, the quantities ¢, ¢, are determined in a unique way. Then
from equalities (8) the quantities a,, a,, b, b, are uniquely determined. The theorem is
proved.

Note that the theorem is true for any boundary conditions, provided that the linear forms
are linearly independent

U, (v) = a,y"(-1) + a,y' (1) + a,y(-1) + 2,y (1),
U, (y)=a,y’ (1) +a,y' (1) + a,y(-1) + a,,y (1)

Theorem 3. If the boundary value problem (1), (3) has no nontrivial solutions, then for
any continuous function f (X) EC:ﬂ—l, 1] the non-homogeneous problem

y” () +ay” (=x)+q(x) y(x)= f(x) (10)
with the same boundary conditions has a unique solution written as

y(x)=j'G(x,t) f ()t an

where G (x,t) is the Green’s function of the homogeneous boundary value problem.

Proof. After differentiating the function (11) two times, we obtain the relation

y7(x)= [ G0t T (Oat+ | 600t f (Ydt+ [G/(x 1) (t)dt—

12
[ GI), L, =G|, | () =[Gl (), =Gl (X)L, ] F (%), -
After replacing by we get
y7(x)= | G/x ) f ()t s [ G/oxt) f ()dt+ [ (-x 1) f (D)t +
+[G(—x,t)'X . O—G(—x,t)'x ) 0}f(—x)+ (13)
+[G(—x,t)'X . O—G(—x,t)'X . 0]f(x)
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Note that

G(xt)  ~G(-xi)

t=—x-0

—G(-xt)

t=x+0

(o),
t=—x+0

=0c(1—0c2)_1.

t=x-0

4
X

(14)
G(-x,t)

G,(~t-0,t)-G(~t+0,t)=al-0?) ",
G,(t-0,t)-G;(t+0,t)=(1-a?) .

Substituting relations (12), (13), (14) into equation (10), we obtain the equality

O ()t i £ (X 2 ()= % (x)= £ ()

Ji-o? Ji-o? N N

Therefore, function (11) satisfies equation (1). The fulfillment of the boundary conditions
is verified directly, since the Green’s function, by definition, satisfies the boundary conditions.
The theorem has been proved.

The proved theorem is also valid for the boundary conditions

Ul(y) = auy'(_l) + aizyl(l) + a’lSy(_l) + ai4y(1) =0,
U, (y) = a21y'(_1) + 3y y'(l) + ast(_l) + a24Y(1) =0.

Existence of eigenvalues of boundary value problems for a second-order differential
equation with involution. In the general theory of differential equations, eigenvalue
problems occupy an important place. Consider the boundary value problem

y”(X) +oy” (=x)+q(x) y(x) =Ay(x) (16)

with boundary conditions (3). The question is raised about the existence of eigenvalues of
the boundary value problem (16), (3).

Let the boundary value problem (1), (3) have only a zero solution. Then, by Theorem 3,
the boundary value problem (16), (3) is equivalent to the integral equation

(15)

1

y(x)=A[G(xt)y(t)dt . (17)

-1

Due to continuity of the Green’s function G (x, t) , the theory of Fredholm integral equa-

tions can be applied to the integral equation (17), according to which the integral equation
(17) has infinite number of eigenvalues with a single limit point at infinity. Therefore, the
following assertion is valid.

Assertion. If the boundary value problem (1), (3) does not have a nontrivial solution,
then the boundary value problem (16), (3) has an infinite number of eigenvalues with a
single limit point at infinity.
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Example. Consider a Dirichlet-type problem for the following second-order differential
equation with an involution

—-y”(x)+oy”(-x)=0,-1<x<1, —l<a<l, (18)
y(-1)=0,y(1)=0, (19)
It is not difficult to check that the boundary value problem (18), (19) has only a zero

solution. Then it has a Green’s function. By direct calculation, one can verify that the func-
tion

L X icx
a l+a
G(xt)= ! o x 1LX o _x<t<x
"o2(1-a) 2(1+a) 2l-a 1+’ ’
1t X
+—— t<X
-a 1+a

is the Green's function of the boundary value problem (18), (19). To do this, it suffices to show
1

that the function y(X) = IG (x,t) f(t)dt satisfies the equation —y”(x)+oy” (—x)= f (x)
-1

and boundary conditions (19) for any continuous function f (X) .
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Akaoemux A. Kyambekos amvlHOabl XAN6IKMAp 00CMblebl YHUSEPCUMeni,
HlIvimxenm, Kazakcman
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WHBOJIIOLIASICHI BAP EKTHIII PETTI
JTU®PEPEHIMAJIBIK TEHJEY YIITH IIEKAPAJIBIK
ECENTIH I'PUH OYHKIUASCHI

Exinwi pemmi mybiHObICHIHOA UHBOMOYUACHL Oap Oupdeperyuandsvt meyoey yulin WeKapaiblK
ecen Kapacmulpsbliaosl. 3epmmenemin meHOeyOiy Cul3bIKMblK Mayeicis uewimoepiniy 6ap exeuoici
aHbIKManowvl. I pun QyHKyuACvIHbIY anvikmamacsl bepineen. Lllemmik ecenmiy menwikmi mMaHOepi bap
exenoiei 0anendendi. [Jupuxie wemmik eceOiniy I pur yHKyusaCsl aiKblH mypoe Hca3vliobl.

Tyitin ce30ep: uneonoyusacel 6ap ouggepenyuanrovt menoeynep, I pun @QYKHYUACHL, MeHWIKMI
MaHOep.
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®YHKIA TPHHA KPAEBOM 3AJIAYH JJIS1 JUPDPEPEHIIUAJIBHOT'O
YPABHEHMUSI BTOPOT'O ITOPSJIKA C MHBOJIFOIIUENA

Paccmampusaemcs kpaesas 3a0aya 015 OuppepeHyuanbHo2o ypasHeHus 6mopo2o nopsioka ¢ UHEo-
Jroyuetl 80 6Mopoll NPOU3B0OHOU. YCMAHOBIEHO CYWeCMBOBAHUE TUHEIHO HEe3A8UCUMbBLX PEUeHUll U3YYd-
emoeco ypasnenus. Jlano onpedenenue @ynkyuu I puna. /Joxazano cywecmeoganue co6CmeeHuvblx 3naie-
Hull 3a0ay Ha cobcmeennvie snavenus. Ilocmpoena ynxyus I puna 6 cayyae 3aoauu muna Jupuxie.

Kniouesvie cnosa: OLY c uneomoyueii; ¢ynkyus I puna; cobcmeennoe 3navenue.



