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Abstract. In this paper, the derivation of the equations of dynamics of a four-wheeled mobile robot is 
carried out using the variational principle of least constraint, known as the Gauss principle. Equations 
of nonholonomic constraints are obtained. The function of the measure of coercion of the four-wheeled 
mobile robot is composed. Dynamic equations based on the Gauss principle are obtained taking into ac-
count the dynamic characteristics of two DC motors. Methods for taking into account the friction forces 
on the wheels and random perturbations due to the unevenness of the canvas are proposed. On the Maple 
platform, an algorithm and a program for modeling the dynamics of a mobile robot based on the Gauss 
principle were developed the correctness of the obtained equations of robot motion were proved.
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Introduction. The subject of the proposed study is a mobile four-wheeled GMTR. Such 
robots are used in the machine-building complex for flexible automated production tasks[1], 
warehouse terminals, and are gaining an increasing sector in the mining industry [2].

The research begins with modeling the dynamics of MR. A lot of works are devoted to 
solving this problem[1]. Algorithms for implementing dynamic calculations can be built 
using traditional Lagrange-Euler or Newton-Euler methods [3]. In many works, other forms 
of robot motion equations are used. These include the Wicker equations [4], or the recurrent 
Hollerbach equations [5], obtained using the Lagrange-Euler method; the Lu equations [6] 
based on the Newton-Euler method; the Lee equations [7] using the generalized Dalembert 
equations. All these equations are different in form, since they are obtained for different 
purposes [1,3]. Some of them provide the minimum time for calculating control moments 
and reactions in the joints of the manipulator, others are used in the synthesis and analysis 
of control laws, the third is used to simulate manipulator movements [8]. 

In the dynamics of wheeled MR, the main issue of modeling is the interaction of the 
wheel with the surface (relief), which is characterized as a non-holonomic bond [9] or the 
friction force based on the Coulomb-Amonton law [10,11,12], with liquid friction accord-
ing to the Newton formula [12]. In [11], four possible cases of wheel-terrain interaction 
were noted. The first case is a rigid wheel moving over rough terrain. The second case is 
a rigid wheel moving over deformable terrain. The third case is a deformable wheel mov-
ing over a deformable terrain. The fourth case is a deformable wheel moving over rough 
terrain. Although many different types of models (i.e. finite elements, discrete elements, 
empirical) have been developed for each of these four cases, the focus here is on analytical 
models [12]. At the same time, in these works, the random nature of friction associated with 
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the change of sign and the consideration of abrupt changes in the load were ignored. For 
highly loaded robots, dynamic performance indicators become essential because they have 
a significant impact on the modes of movement of the system.

In this regard, the practical application of a mobile transport robot requires extensive 
research of the dynamics and evaluation of the accuracy of the quality of movement in order 
to optimize the developed control system, while not changing the developed concept and 
hierarchical structure of the intelligent control system MR [13,14,15]. 

The robot's reaction to stochastic external disturbances (abrupt changes in the gravity 
of the load) and non-holonomic connections (wheel slippage) is investigated. The deriva-
tion of differential equations is carried out using the variational principle of least coercion, 
known as the Gauss principle. Algorithms and numerical programs have been developed for 
analyzing and deriving calculated formulas of disturbing forces, including stochastic ones, 
due to random obstacles under the wheels, abrupt changes in the load and its movement on 
the upper platform, sudden changes in the directions of movement, acceleration and braking 
of the robot in a short period of time. 

Derivation of dynamic equations. The universal platform of the mobile robot consists 
of a frame on which four wheels and two electric motors are attached (Figure 1). The two 
rear wheels are driving. The robot platform is a frame of variable length on which various 
mechanisms can be installed. 

Figure 1 – Calculation scheme of a mobile robot for deriving equations of motion

We introduce the following coordinate systems: a fixed coordinate system Oxyz , the 
plane of which Oxy coincides with the horizontal rough plane on which the wheels of the 
robot roll, and the movable system Ax1y1z1 starting at point A, rigidly connected to its plat-
form (Figure 1). At the same time, the axis Ay1 directed along the line C3C4, and the center of 
gravity of the robot C1 lies on the axis Ax1, being the axis of symmetry of the chassis.
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When modeling the movement of a mobile robot, we introduce a number of conditions: a) 
the robot is considered as a system of absolutely rigid bodies; c) the movement is carried out 
without slipping; d) the masses of the front wheels, gears of reduction gears are considered 
equal to zero; c) the robot moves with the driven wheel forward.

Communication equations. The position of the bodies of the mobile robot in the coordinate 
system Oxyz is determined by the vector of generalized coordinates q1 =

optimize the developed control system, while not changing the developed concept and 
hierarchical structure of the intelligent control system MR [13,14,15].  
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c) the robot moves with the driven wheel forward. 
 Communication equations. The position of the bodies of the mobile robot in the 
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, 
where x, y – координаты точки A – the midpoints of the segment connecting the centers 
C3C4 rear wheels 3,4; y - angle of rotation around the vertical platform 1, measured from 
the axis Ox; j1, j2 - angles of rotation of the driving wheels relative to the horizontal axes. 
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optimize the developed control system, while not changing the developed concept and 
hierarchical structure of the intelligent control system MR [13,14,15].  

         Е-mail  корреспондирующего автора: Chingiz_kopa@mail.ru 
The robot's reaction to stochastic external disturbances (abrupt changes in the gravity of 

the load) and non-holonomic connections (wheel slippage) is investigated. The derivation of 
differential equations is carried out using the variational principle of least coercion, known as the 
Gauss principle. Algorithms and numerical programs have been developed for analyzing and 
deriving calculated formulas of disturbing forces, including stochastic ones, due to random 
obstacles under the wheels, abrupt changes in the load and its movement on the upper platform, 
sudden changes in the directions of movement, acceleration and braking of the robot in a short 
period of time.  

 
Derivation of dynamic equations.  

The universal platform of the mobile robot consists of a frame on which four wheels and 
two electric motors are attached (Figure 1). The two rear wheels are driving. The robot platform 
is a frame of variable length on which various mechanisms can be installed.  

 
Figure 1 - Calculation scheme of a mobile robot for deriving equations of motion 

 
We introduce the following coordinate systems: a fixed coordinate system  𝑂𝑥𝑦𝑧 , the 

plane of which𝑂𝑥𝑦 coincides with the horizontal rough plane on which the wheels of the robot 
roll, and the movable system 𝐴𝑥1𝑦1𝑧1 starting at point 𝐴, rigidly connected to its platform 
(Figure 1). At the same time, the axis 𝐴𝑦1 directed along the line𝐶�𝐶�, and the center of gravity 
of the robot 𝐶1   lies on the axis 𝐴𝑥1, being the axis of symmetry of the chassis. 
When modeling the movement of a mobile robot, we introduce a number of conditions: a) the 
robot is considered as a system of absolutely rigid bodies; c) the movement is carried out without 
slipping; d) the masses of the front wheels, gears of reduction gears are considered equal to zero; 
c) the robot moves with the driven wheel forward. 
 Communication equations. The position of the bodies of the mobile robot in the 
coordinate system 𝑂𝑥𝑦𝑧 is determined by the vector of generalized coordinates 𝑞1 =
|𝑥,𝑦,𝜓,𝜑1,𝜑�|�, where 𝑥,𝑦 – координаты точки 𝐴 – the midpoints of the segment connecting 
the centers 𝐶�𝐶�  rear wheels 3,4; 𝜓 - angle of rotation around the vertical platform 1, measured 
from the axis 𝑂𝑥; 𝜑1,𝜑� - angles of rotation of the driving wheels relative to the horizontal axes. 
Accordingly, the vector of generalized robot velocities has the form 𝑞̇ = |𝑥̇, 𝑦̇, 𝜓̇, 𝜑̇1,𝜑�̇|�.  
 The platform angular velocity vector is defined as 𝛺 =  |0,0, 𝜓̇ ̇ |�, where vector Ω given 
by projections on the axes 𝐴𝑥𝑦𝑧. The vectors of the angular velocities of the drive wheels are 

The platform angular velocity vector is defined as 

optimize the developed control system, while not changing the developed concept and 
hierarchical structure of the intelligent control system MR [13,14,15].  

         Е-mail  корреспондирующего автора: Chingiz_kopa@mail.ru 
The robot's reaction to stochastic external disturbances (abrupt changes in the gravity of 

the load) and non-holonomic connections (wheel slippage) is investigated. The derivation of 
differential equations is carried out using the variational principle of least coercion, known as the 
Gauss principle. Algorithms and numerical programs have been developed for analyzing and 
deriving calculated formulas of disturbing forces, including stochastic ones, due to random 
obstacles under the wheels, abrupt changes in the load and its movement on the upper platform, 
sudden changes in the directions of movement, acceleration and braking of the robot in a short 
period of time.  

 
Derivation of dynamic equations.  

The universal platform of the mobile robot consists of a frame on which four wheels and 
two electric motors are attached (Figure 1). The two rear wheels are driving. The robot platform 
is a frame of variable length on which various mechanisms can be installed.  

 
Figure 1 - Calculation scheme of a mobile robot for deriving equations of motion 

 
We introduce the following coordinate systems: a fixed coordinate system  𝑂𝑥𝑦𝑧 , the 

plane of which𝑂𝑥𝑦 coincides with the horizontal rough plane on which the wheels of the robot 
roll, and the movable system 𝐴𝑥1𝑦1𝑧1 starting at point 𝐴, rigidly connected to its platform 
(Figure 1). At the same time, the axis 𝐴𝑦1 directed along the line𝐶�𝐶�, and the center of gravity 
of the robot 𝐶1   lies on the axis 𝐴𝑥1, being the axis of symmetry of the chassis. 
When modeling the movement of a mobile robot, we introduce a number of conditions: a) the 
robot is considered as a system of absolutely rigid bodies; c) the movement is carried out without 
slipping; d) the masses of the front wheels, gears of reduction gears are considered equal to zero; 
c) the robot moves with the driven wheel forward. 
 Communication equations. The position of the bodies of the mobile robot in the 
coordinate system 𝑂𝑥𝑦𝑧 is determined by the vector of generalized coordinates 𝑞1 =
|𝑥,𝑦,𝜓,𝜑1,𝜑�|�, where 𝑥,𝑦 – координаты точки 𝐴 – the midpoints of the segment connecting 
the centers 𝐶�𝐶�  rear wheels 3,4; 𝜓 - angle of rotation around the vertical platform 1, measured 
from the axis 𝑂𝑥; 𝜑1,𝜑� - angles of rotation of the driving wheels relative to the horizontal axes. 
Accordingly, the vector of generalized robot velocities has the form 𝑞̇ = |𝑥̇, 𝑦̇, 𝜓̇, 𝜑̇1,𝜑�̇|�.  
 The platform angular velocity vector is defined as 𝛺 =  |0,0, 𝜓̇ ̇ |�, where vector Ω given 
by projections on the axes 𝐴𝑥𝑦𝑧. The vectors of the angular velocities of the drive wheels are 

, where vector Ω given 
by projections on the axes Axyz. The vectors of the angular velocities of the drive wheels 
are determined by the relations: determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0, 𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 

projections on the axes 𝐴𝑥1𝑦1𝑧1. 
The speeds of the points of contact of the driving wheels with the surface can be 

determined from the equations: 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 
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vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
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Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
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                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 

Let's write down the matrix Н: 
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 
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Here 𝐹𝑖𝑥, 𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖, 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖, 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
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passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
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determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
projections on the axes 𝐴𝑥1𝑦1𝑧1. 

The speeds of the points of contact of the driving wheels with the surface can be 
determined from the equations: 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 

where 𝑉- linear velocity vector of point A of the platform;  𝑉𝑃�- contact point velocity 
vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 

�
𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 + 𝑙𝜓̇ − 𝑟𝜙̇1 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 

Let's write down the matrix Н: 
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 
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 - contact point velocity vector  

P3 left wheel; Vp4
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Since the movement of the drive wheels occurs without slipping, it means Vp4
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vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 

�
𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 + 𝑙𝜓̇ − 𝑟𝜙̇1 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 

Let's write down the matrix Н: 

𝐻 =
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
� ∑ �𝑚𝑖 �𝑥̈𝑖 −
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𝑖=1 .                       (5) 

Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 

	                                     (2)

Vector of pseudovelocities 

determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
projections on the axes 𝐴𝑥1𝑦1𝑧1. 

The speeds of the points of contact of the driving wheels with the surface can be 
determined from the equations: 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 

where 𝑉- linear velocity vector of point A of the platform;  𝑉𝑃�- contact point velocity 
vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 

�
𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 + 𝑙𝜓̇ − 𝑟𝜙̇1 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 

Let's write down the matrix Н: 
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
� ∑ �𝑚𝑖 �𝑥̈𝑖 −
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 

 includes two elements: velocity 

determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
projections on the axes 𝐴𝑥1𝑦1𝑧1. 

The speeds of the points of contact of the driving wheels with the surface can be 
determined from the equations: 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 

where 𝑉- linear velocity vector of point A of the platform;  𝑉𝑃�- contact point velocity 
vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 
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𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 + 𝑙𝜓̇ − 𝑟𝜙̇1 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 

Let's write down the matrix Н: 

𝐻 =
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
� ∑ �𝑚𝑖 �𝑥̈𝑖 −
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+ 𝐽𝑖 �𝜙̈𝑖 −
𝑀𝑖
𝐽𝑖
�
�
�𝑁

𝑖=1 .                       (5) 

Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 

 
points A, angular velocity of platform Ω = �ψ . The relationship between the generalized and 
pseudovelocities of the system in this case has the form

					               

determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
projections on the axes 𝐴𝑥1𝑦1𝑧1. 

The speeds of the points of contact of the driving wheels with the surface can be 
determined from the equations: 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 

where 𝑉- linear velocity vector of point A of the platform;  𝑉𝑃�- contact point velocity 
vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 

�
𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 + 𝑙𝜓̇ − 𝑟𝜙̇1 = 0,
𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 

Let's write down the matrix Н: 

𝐻 =
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
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�
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 
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Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 
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𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 

Dependence (3) between generalized velocities and pseudovelocities can be rewritten 
in scalar form:
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determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
projections on the axes 𝐴𝑥1𝑦1𝑧1. 

The speeds of the points of contact of the driving wheels with the surface can be 
determined from the equations: 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 

where 𝑉- linear velocity vector of point A of the platform;  𝑉𝑃�- contact point velocity 
vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 
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𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
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𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
scalar form: 

𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 

                                                (4)

determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
projections on the axes 𝐴𝑥1𝑦1𝑧1. 

The speeds of the points of contact of the driving wheels with the surface can be 
determined from the equations: 

𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺1, 𝑟],                                                     (1) 
𝑉𝑃� = 𝑉 + [𝛺, 𝑙] + [𝛺�, 𝑟], 

where 𝑉- linear velocity vector of point A of the platform;  𝑉𝑃�- contact point velocity 
vector 𝑃� left wheel; 𝑉𝑃�- contact point velocity vector 𝑃� right wheel; 𝑙 =  𝐴𝐶�  =  𝐴𝐶� – half 
the distance between the driving wheels; 𝑟 =  𝐶�𝑃� =  𝐶�𝑃� – drive wheel radius. 

Since the movement of the drive wheels occurs without slipping, it means 𝑉𝑃� = 𝑉𝑃� = 0.  
Taking into account this condition, based on the projection of equation (1) on the axis 𝐴𝑥1𝑦1𝑧1 
we obtain three independent equations of non-integrable (non-holonomic) constraints: 
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𝑉𝑃�𝑦1 = 𝑉𝑃�𝑦1 = −𝑥̇ 𝑠𝑖𝑛 𝜓 + 𝑦̇ 𝑐𝑜𝑠 𝜓 = 0,
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𝑉𝑃�𝑥1 = 𝑥̇ 𝑐𝑜𝑠 𝜓 + 𝑦̇ 𝑠𝑖𝑛 𝜓 − 𝑙𝜓̇ − 𝑟𝜙̇� = 0,

                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 

generalized and pseudovelocities of the system in this case has the form 
 𝑞̇ = 𝐻𝜋̇     (3) 
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𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
�𝜋̈ = 0.                                                             (6) 

The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 
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determined by the relations: 𝛺1 =  |0, 𝜑̇1, 𝜓̇ ̇ |�, 𝛺� =  |0,𝜑�̇, 𝜓̇ ̇ |�, where 𝛺1, 𝛺� given as 
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                          (2) 

Vector of pseudovelocities (𝜋̇ = [𝑉 Ω]̇ ) includes two elements: velocity 
 sincos yxV    points A, angular velocity of platform Ω= . The relationship between the 
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Dependence (3) between generalized velocities and pseudovelocities can be rewritten in 
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𝑥̇ = 𝑉𝑐𝑜𝑠𝜓,   𝑦̇ = 𝑉𝑠𝑖𝑛𝜓 ,                                                   (4) 
𝜓̇ = Ω,  𝜑̇1 = 𝑉+𝑙Ω

𝑟 ,  𝜑̇� = 𝑉−𝑙Ω
𝑟 ,  

Dynamic equations. The derivation of differential equations will be carried out using the 
variational principle of least constraint, known as the Gauss principle. As a measure of coercion, 
a value Z is taken in the form of the following functional 

𝑍 = 1
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 

𝛿𝑍 = 0, �𝑍
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The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 
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a value Z is taken in the form of the following functional 

𝑍 = 1
� ∑ �𝑚𝑖 �𝑥̈𝑖 −

𝐹𝑖𝑥
𝑚𝑖
�
�

+ 𝑚𝑖 �𝑦̈𝑖 −
𝐹𝑖𝑦
𝑚𝑖
�
�

+ 𝐽𝑖 �𝜙̈𝑖 −
𝑀𝑖
𝐽𝑖
�
�
�𝑁

𝑖=1 .                       (5) 
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of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 
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plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
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Here 𝐹𝑖𝑥,𝐹𝑖𝑦-  projections of external forces reduced to the center of mass, 𝑀𝑖- moment 
of external forces, 𝑚𝑖 , 𝐽𝑖- mass and moment of inertia relative to the center of mass of the i-th 
link,  𝛿𝑥̈𝑖 , 𝛿𝑦̈𝑖, 𝛿𝜙̈𝑖 - variations of projections of the acceleration vector and angular acceleration. 

The equations of dynamics of a mechanical system are obtained from the stationarity 
condition in variational form and the necessary conditions for the minimum of the functional (5) 
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The moving parts of the mobile robot are the platform and wheels, which, relative to the 
plane of their location, make flat movements. The following designations are accepted:   𝑚1  – 
суммарная масса платформы, 𝐽1 - the moment of inertia of the robot about the vertical axis 
passing through its center of mass 𝐶1, 𝑎 = 𝐴𝐶1– distance from point A to the center of gravity of 
the robot 𝐶1, 𝑚� – total weight of the driving wheel, 𝐽𝑦 – moment of inertia of the wheel about 
the horizontal axis. 
Then functional (5) for the considered mobile robot can be written in the form 
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The moving parts of the mobile robot are the platform and wheels, which, relative to 
the plane of their location, make flat movements. The following designations are accepted:  
m1 – суммарная масса платформы, ji - the moment of inertia of the robot about the vertical 
axis passing through its center of mass C1, a = AC1 – distance from point A to the center of 
gravity of the robot C1, mk – total weight of the driving wheel, jy – moment of inertia of the 
wheel about the horizontal axis.

Then functional (5) for the considered mobile robot can be written in the form
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where Mfr1,Mfr2 — moments of rolling friction on the driving wheels;  𝑀�1 , 𝑀�� – driving 
moments; 𝐹 – projection of the main force on the direction of velocity 𝑉, brought to point A 
platform,   𝑀𝑅 – main moment of forces acting on the platform.       
In equation (7) from system (4), we substitute the last two equations, which are presented in the 
form 

𝜑̈1 = 𝑏1𝑉̇ + 𝑏�𝛺̇, 
𝜑̈� = 𝑏1𝑉̇ − 𝑏�𝛺̇,                                                      (8) 

where 𝑏1 = 1 𝑟�  , 𝑏� = 𝑙 𝑟� . 
Then  
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From conditions (6) one can obtain four equations. The first condition satisfies the equation  
𝛿𝑍 = 𝐵1(𝜋̈1, 𝜋̈�)𝛿𝜋̈1 + 𝐵�(𝜋̈1, 𝜋̈�)𝛿𝜋̈� = 0.                           (10) 

Note that synchronous variation takes place here, in which only the acceleration remains 
1 2 1 2,i i i iv v w w  , which is called Gaussian variation: 

                                                 21 ( )
2i ir w t   ,                                                                  (11) 

where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
Taking into account the independence of pseudoaccelerations  𝜋̈1 = 𝑉̇ и 𝛿𝜋̈� = 𝛺̇ to fulfill 
equation (10), it is necessary that  

𝐵1(𝜋̈1, 𝜋̈�) = 0, 𝐵�(𝜋̈1, 𝜋̈�) = 0.                                  (12) 
Equation (12) is used to determine the driving forces 𝑀�1 , 𝑀��. 

The equations of motion of the mobile robot will be obtained from the equations 
�𝑍
�𝜋̈1

= 0,            �𝑍
�𝜋̈�

= 0                                                    (13) 
Let us assume that DC motors are installed on the driving wheels [13,17]. Then, based on 
equations (12) and (13), we obtain the equations of the dynamics of a mobile robot in the 
following form:        
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(14) 

where 𝐿- inductance;  𝑖1, 𝑖�- currents in the armature circuits; 𝑅 − armature circuit resistance; 
𝑈1,𝑈� – circuit voltage (control parameters); 𝑛 - gear ratio. 
The coefficient of electromechanical interaction with is determined as follows: 

с = (𝑀1−𝑀�)𝑈𝐻
𝛾̇𝐻𝑀1

,                                                         (15)
 

 
where 𝑀1 - motor starting torque; 𝑀� - rated motor torque; 𝛾̇𝐻,𝑈𝐻- respectively, the rated 
angular velocity and the rated voltage of the electric motor. 
Values 𝑀�𝑟� (k= 1,2) from equations (14) we define as follows: 
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platform, MR – main moment of forces acting on the platform. 
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where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
Taking into account the independence of pseudoaccelerations  𝜋̈1 = 𝑉̇ и 𝛿𝜋̈� = 𝛺̇ to fulfill 
equation (10), it is necessary that  
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The coefficient of electromechanical interaction with is determined as follows: 

с = (𝑀1−𝑀�)𝑈𝐻
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where 𝑀1 - motor starting torque; 𝑀� - rated motor torque; 𝛾̇𝐻,𝑈𝐻- respectively, the rated 
angular velocity and the rated voltage of the electric motor. 
Values 𝑀�𝑟� (k= 1,2) from equations (14) we define as follows: 
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where Mfr1,Mfr2 — moments of rolling friction on the driving wheels;  𝑀�1 , 𝑀�� – driving 
moments; 𝐹 – projection of the main force on the direction of velocity 𝑉, brought to point A 
platform,   𝑀𝑅 – main moment of forces acting on the platform.       
In equation (7) from system (4), we substitute the last two equations, which are presented in the 
form 
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From conditions (6) one can obtain four equations. The first condition satisfies the equation  
𝛿𝑍 = 𝐵1(𝜋̈1, 𝜋̈�)𝛿𝜋̈1 + 𝐵�(𝜋̈1, 𝜋̈�)𝛿𝜋̈� = 0.                           (10) 

Note that synchronous variation takes place here, in which only the acceleration remains 
1 2 1 2,i i i iv v w w  , which is called Gaussian variation: 
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where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
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𝐵1(𝜋̈1, 𝜋̈�) = 0, 𝐵�(𝜋̈1, 𝜋̈�) = 0.                                  (12) 
Equation (12) is used to determine the driving forces 𝑀�1 , 𝑀��. 
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where 𝐿- inductance;  𝑖1, 𝑖�- currents in the armature circuits; 𝑅 − armature circuit resistance; 
𝑈1,𝑈� – circuit voltage (control parameters); 𝑛 - gear ratio. 
The coefficient of electromechanical interaction with is determined as follows: 
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where 𝑀1 - motor starting torque; 𝑀� - rated motor torque; 𝛾̇𝐻,𝑈𝐻- respectively, the rated 
angular velocity and the rated voltage of the electric motor. 
Values 𝑀�𝑟� (k= 1,2) from equations (14) we define as follows: 
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where Mfr1,Mfr2 — moments of rolling friction on the driving wheels;  𝑀�1 , 𝑀�� – driving 
moments; 𝐹 – projection of the main force on the direction of velocity 𝑉, brought to point A 
platform,   𝑀𝑅 – main moment of forces acting on the platform.       
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form 
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From conditions (6) one can obtain four equations. The first condition satisfies the equation  
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Note that synchronous variation takes place here, in which only the acceleration remains 
1 2 1 2,i i i iv v w w  , which is called Gaussian variation: 
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where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
Taking into account the independence of pseudoaccelerations  𝜋̈1 = 𝑉̇ и 𝛿𝜋̈� = 𝛺̇ to fulfill 
equation (10), it is necessary that  

𝐵1(𝜋̈1, 𝜋̈�) = 0, 𝐵�(𝜋̈1, 𝜋̈�) = 0.                                  (12) 
Equation (12) is used to determine the driving forces 𝑀�1 , 𝑀��. 
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equations (12) and (13), we obtain the equations of the dynamics of a mobile robot in the 
following form:        

⎩
⎪
⎨

⎪
⎧𝑚𝑉̇ = 𝑛𝑐

𝑟 (𝑖1 + 𝑖�) − 𝜇п𝑉 + 1
𝑟 (𝑀�𝑟1 + 𝑀�𝑟�) + 𝑚1𝑎𝛺�

𝐽𝛺̇ = 𝑛𝑐𝑙
𝑟 (𝑖1 − 𝑖�) − 𝜇в𝛺 + 𝑙

𝑟 (𝑀�𝑟1 − 𝑀�𝑟�) −𝑚1𝑎𝑉𝛺
𝐿 �𝑖1

�� + 𝑅𝑖1 + 𝑛𝑐
𝑟 (𝑉 + 𝑙𝛺) = 𝑈1

𝐿 �𝑖�
�� + 𝑅𝑖� + 𝑛𝑐

𝑟 (𝑉 − 𝑙𝛺) = 𝑈�

       

(14) 

where 𝐿- inductance;  𝑖1, 𝑖�- currents in the armature circuits; 𝑅 − armature circuit resistance; 
𝑈1,𝑈� – circuit voltage (control parameters); 𝑛 - gear ratio. 
The coefficient of electromechanical interaction with is determined as follows: 
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where 𝑀1 - motor starting torque; 𝑀� - rated motor torque; 𝛾̇𝐻,𝑈𝐻- respectively, the rated 
angular velocity and the rated voltage of the electric motor. 
Values 𝑀�𝑟� (k= 1,2) from equations (14) we define as follows: 
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where Mfr1,Mfr2 — moments of rolling friction on the driving wheels;  𝑀�1 , 𝑀�� – driving 
moments; 𝐹 – projection of the main force on the direction of velocity 𝑉, brought to point A 
platform,   𝑀𝑅 – main moment of forces acting on the platform.       
In equation (7) from system (4), we substitute the last two equations, which are presented in the 
form 

𝜑̈1 = 𝑏1𝑉̇ + 𝑏�𝛺̇, 
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From conditions (6) one can obtain four equations. The first condition satisfies the equation  
𝛿𝑍 = 𝐵1(𝜋̈1, 𝜋̈�)𝛿𝜋̈1 + 𝐵�(𝜋̈1, 𝜋̈�)𝛿𝜋̈� = 0.                           (10) 

Note that synchronous variation takes place here, in which only the acceleration remains 
1 2 1 2,i i i iv v w w  , which is called Gaussian variation: 

                                                 21 ( )
2i ir w t   ,                                                                  (11) 

where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
Taking into account the independence of pseudoaccelerations  𝜋̈1 = 𝑉̇ и 𝛿𝜋̈� = 𝛺̇ to fulfill 
equation (10), it is necessary that  

𝐵1(𝜋̈1, 𝜋̈�) = 0, 𝐵�(𝜋̈1, 𝜋̈�) = 0.                                  (12) 
Equation (12) is used to determine the driving forces 𝑀�1 , 𝑀��. 

The equations of motion of the mobile robot will be obtained from the equations 
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where 𝐿- inductance;  𝑖1, 𝑖�- currents in the armature circuits; 𝑅 − armature circuit resistance; 
𝑈1,𝑈� – circuit voltage (control parameters); 𝑛 - gear ratio. 
The coefficient of electromechanical interaction with is determined as follows: 

с = (𝑀1−𝑀�)𝑈𝐻
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where 𝑀1 - motor starting torque; 𝑀� - rated motor torque; 𝛾̇𝐻,𝑈𝐻- respectively, the rated 
angular velocity and the rated voltage of the electric motor. 
Values 𝑀�𝑟� (k= 1,2) from equations (14) we define as follows: 
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where Mfr1,Mfr2 — moments of rolling friction on the driving wheels;  𝑀�1 , 𝑀�� – driving 
moments; 𝐹 – projection of the main force on the direction of velocity 𝑉, brought to point A 
platform,   𝑀𝑅 – main moment of forces acting on the platform.       
In equation (7) from system (4), we substitute the last two equations, which are presented in the 
form 

𝜑̈1 = 𝑏1𝑉̇ + 𝑏�𝛺̇, 
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Note that synchronous variation takes place here, in which only the acceleration remains 
1 2 1 2,i i i iv v w w  , which is called Gaussian variation: 
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where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
Taking into account the independence of pseudoaccelerations  𝜋̈1 = 𝑉̇ и 𝛿𝜋̈� = 𝛺̇ to fulfill 
equation (10), it is necessary that  

𝐵1(𝜋̈1, 𝜋̈�) = 0, 𝐵�(𝜋̈1, 𝜋̈�) = 0.                                  (12) 
Equation (12) is used to determine the driving forces 𝑀�1 , 𝑀��. 

The equations of motion of the mobile robot will be obtained from the equations 
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where 𝐿- inductance;  𝑖1, 𝑖�- currents in the armature circuits; 𝑅 − armature circuit resistance; 
𝑈1,𝑈� – circuit voltage (control parameters); 𝑛 - gear ratio. 
The coefficient of electromechanical interaction with is determined as follows: 
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where 𝑀1 - motor starting torque; 𝑀� - rated motor torque; 𝛾̇𝐻,𝑈𝐻- respectively, the rated 
angular velocity and the rated voltage of the electric motor. 
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where Mfr1,Mfr2 — moments of rolling friction on the driving wheels;  𝑀�1 , 𝑀�� – driving 
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platform,   𝑀𝑅 – main moment of forces acting on the platform.       
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From conditions (6) one can obtain four equations. The first condition satisfies the equation  
𝛿𝑍 = 𝐵1(𝜋̈1, 𝜋̈�)𝛿𝜋̈1 + 𝐵�(𝜋̈1, 𝜋̈�)𝛿𝜋̈� = 0.                           (10) 

Note that synchronous variation takes place here, in which only the acceleration remains 
1 2 1 2,i i i iv v w w  , which is called Gaussian variation: 
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where t - short time, ir - displacement vector variation, iw - acceleration vector variation. 
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Equation (12) is used to determine the driving forces 𝑀�1 , 𝑀��. 

The equations of motion of the mobile robot will be obtained from the equations 
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Let us assume that DC motors are installed on the driving wheels [13,17]. Then, based on 
equations (12) and (13), we obtain the equations of the dynamics of a mobile robot in the 
following form:        
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where 𝐿- inductance;  𝑖1, 𝑖�- currents in the armature circuits; 𝑅 − armature circuit resistance; 
𝑈1,𝑈� – circuit voltage (control parameters); 𝑛 - gear ratio. 
The coefficient of electromechanical interaction with is determined as follows: 
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where 𝛿 — коэффициент трения качения; 𝑁�— normal reaction force of the horizontal 
reference plane acting on k - driving wheel. 
 

Discussion of results and conclusion. 
As a result, based on the Gauss principle of least constraints, the equations of dynamics 

of a four-wheeled mobile robot with two driving wheels are obtained. Equations (14) take into 
account the moments of friction force that occur between the wheels and the web, as well as the 
dynamic characteristics of DC motors. The unevenness of the web when modeling the dynamics 
of a mobile robot is carried out by adding to the system (14) the following equation  

𝑚𝑧̈ = −𝑐(𝑧 − ℎ) − 𝛼�𝑧̇ − ℎ̇�,                                                   (17) 
where the functions h(z) of the road roughness and has the form of a function with a random 
amplitude. 
 

 
а) 

 
b) 

Figure 2 – Graphs of the movement of a mobile robot: a) the trajectory of movement; b) 
animation of moving the robot platform 

 
In the Maple analytical computing system, a program was compiled for simulating the 

movement of a mobile robot based on equations (14) and calculating the transverse vibrations of 
the robot body when moving along a road with bumps based on equation (17). Figure 2 shows 
the simulation results. Figure 2a shows the trajectory of the center of gravity of the mobile robot 
with the speed V and the angular velocity of rotation Ω of the platform relative to this center. 
The turn can be clearly seen in Figure 2b, which shows the animation of platform movements 
along the center trajectory. Figure 3 shows a plot of the speed V of the platform along the 
trajectory. The movement speed is controlled by changing the control parameters 𝑈1,𝑈�. 

 
Figure 3 - Graph of the change in the speed V of the platform along the trajectory 

 
The segments of the piecewise linear characteristic determine the number of segments 

that are involved in the fitting procedure. The fitting method is an exact method for solving a 
particular equation. 
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reference plane acting on k - driving wheel.
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Figure 2 – Graphs of the movement of a mobile robot: a) the trajectory of movement; 
b) animation of moving the robot platform

In the Maple analytical computing system, a program was compiled for simulating the 
movement of a mobile robot based on equations (14) and calculating the transverse vibra-
tions of the robot body when moving along a road with bumps based on equation (17). 
Figure 2 shows the simulation results. Figure 2a shows the trajectory of the center of gravity 
of the mobile robot with the speed V and the angular velocity of rotation Ω of the platform 
relative to this center. The turn can be clearly seen in Figure 2b, which shows the animation 
of platform movements along the center trajectory. Figure 3 shows a plot of the speed V of 
the platform along the trajectory. The movement speed is controlled by changing the control 
parameters U1, U2.

Figure 3 – Graph of the change in the speed V of the platform along the trajectory
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The segments of the piecewise linear characteristic determine the number of segments 
that are involved in the fitting procedure. The fitting method is an exact method for solving 
a particular equation.

In the Maple system, a program was compiled for solving the differential equation of a 
mobile robot, taking into account (17). Let's take the coefficient of road resistance ψ = 0.15 
for a compacted dirt road. The mass of the mobile robot is 1140 kg, the mass of the mobile 
robot with a load is 1640 kg.

The web roughness function in equation (17) as a function of time during the movement 
of the mobile robot. Figure 4a shows that the mass changes in a abrupt at t = 2 с. 

                                                 а)                                                                      b)

Figure 4 – Simulation of the dynamics of the robot, taking into account the unevenness of the web: 
a) a graph of the change in the function h(z); b) the graph of the speed during the acceleration of the 

mobile robot for 5sec and the abrupt change in the load at t = 2 с

Graph 4b shows the acceleration rate of the mobile robot for 5 seconds. As can be seen 
from the graph, after the mass was added (t = 2s), the acceleration speed became slow.

In addition, the value of the functional is indirectly related to the reactions in kinematic 
pairs according to the equality obtained from the Gauss principle 
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according to the equality obtained from the Gauss principle            
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The condition that the quantity is minimal for actual motion leads to an extreme property 
of constraint reactions: for actual motion, constraint reactions are minimal.   
For example, in order to estimate the main vector of force and the main moment of forces 
reduced to the center of gravity of the platform, we have: 

𝑍 = 1
� �

𝑅1�
𝑚1

+ 𝑀1�
𝐽1+𝑚1𝑎�

�,                                                      (19) 
where 𝑅1� – the reaction of the connection between the platform and the wheels, reduced to a 
point 𝐴, 𝑀1�- moment of coupling reactions between the platform and wheels, relative to the 
point 𝐴. 
To find 𝑅1� и 𝑀1� needs to (7) be shaped for (19).  
Thus, the Gaussian principle of no less compulsion made it possible to simplify the procedure for 
deriving the equations of the dynamics of a mobile robot, taking into account the perturbing 
forces, and to evaluate the reactions between individual moving parts (links) of the robot. The 
equations of dynamics obtained on the basis of the Gauss principle are correct and make it 
possible to simulate the motion of the MR taking into account random perturbing forces. 
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where 𝑅1� – the reaction of the connection between the platform and the wheels, reduced to a 
point 𝐴, 𝑀1�- moment of coupling reactions between the platform and wheels, relative to the 
point 𝐴. 
To find 𝑅1� и 𝑀1� needs to (7) be shaped for (19).  
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where R12 – the reaction of the connection between the platform and the wheels, reduced to 
a point A, M12 - moment of coupling reactions between the platform and wheels, relative to 
the point A.

To find R12 и M12 needs to (7) be shaped for (19). 
Thus, the Gaussian principle of no less compulsion made it possible to simplify the 

procedure for deriving the equations of the dynamics of a mobile robot, taking into account 
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the perturbing forces, and to evaluate the reactions between individual moving parts (links) 
of the robot. The equations of dynamics obtained on the basis of the Gauss principle are 
correct and make it possible to simulate the motion of the MR taking into account random 
perturbing forces.

Источник финансирования исследований. Работа выполнена в рамках 
грантового проекта AP14870662, финансируемого Комитетом науки Министерства 
науки и высшего образования Республики Казахстан.

References

1 Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics// Chapter 24 and 49. 
Wheeled Robots. 2nd Edition. Verlag Berlin Heidelberg, 2016

2 P. Corke, J. Roberts, J. Cunningham, and D. Hainsworth, Handbook of Robotics. Berlin, 
Germany: Springer, 2008, pp. 1127-1150.

3 К. Фу, Р. Гонсалес, К. Ли. Робототехника. Перевод с англ.- М.:Мир, 1989. -624 с., [K. Fu, 
R. Gonzalez, K. Lee. Robotics. Translation from English - M.: Mir, 1989. -624 p.]

4 Hollerbach J.M. Dynamic Scalling of Manipulator Trajectories, Trans. ASME, J. Dyn. Systems, 
Measurement and Control, 106, pp. 102-106, 1984.

5 Luh J. Y. S., Walker M.W., Paul R. P. On Line – Computational Scheme for Mechanical 
Manipulators, Trans. ASME, J. Dyn. Systems, Measurement and Control, 120, pp. 69-76, 1980.

6 Lee C. S. G., Lee B. H., Nigam R. Development of the Generalized d’Alembert Equations of 
Motion for Mechanical Manipulators, Proc.2nd Conf. Decision and Control, San Antonio, Tex., pp. 
1205-1210, 1983.

7 Walker M.W., Orin D.E. Efficient Dynamic Computer Simulation of Robotic Mechanisms, 
Trans. ASME, J. Systems, Measurement and Control, 104, pp. 205-211, 1982.

8 G. Campion, G. Bastin, B. dAndrea-Novel: Structural properties and classification of kinematic 
and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Autom. 12, 47–62 (1996)

9 Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics// Chapter 24. 
Wheeled Robots. 2nd Edition. Verlag Berlin Heidelberg 2016

10 W. Chung: Nonholonomic Manipulators, Springer Tracts Adv. Robotics, Vol. 13 (Springer, 
Berlin, Heidelberg 2004)

11 Левитский Н.И. Колебания в механизмах. Уч.пос. –М.: Наука, 1988.-336 с.[ Levitsky N.I. 
Vibrations in mechanisms. Uch.pos. –M.: Nauka, 1988.-336 p.]

12 Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics// Chapter 47. 
Motion Planning and Obstacle Avoidance. 2nd Edition. Verlag Berlin Heidelberg 2016

13 Отчет по НИР по грантовому финансированию (ГФ.2012) на тему «Исследование ди-
намики, разработка системы управления, проектирование и создание опытного образца мо-
бильного робота» на 2012-2014 годы (№ госрегистрации 0112РК0206). [Report on research 
on grant financing (GF.2012) on the topic: “Research of dynamics, development of a control sys-
tem, design and creation of a prototype of a mobile robot” for 2012-2014 (state registration number 
0112RK0206).]

14 Bissembayev K., Jomartov A., Tuleshov A., Dikambay T. Analysis of the Oscillating Motion 
of a Solid Body on Vibrating Bearers // Machines, 2019. – V. 7. - №3. – С. 58. (Scopus: CiteScore 
percentile Mechanical Engineering = 68; WoS).

15 Tuleshov, A., Ozhikenov, K., Ozhiken A. The Dynamical Processes Adaptive Stabilization in 
the Robot Electric Drives Control System, ISSN 1996-3947: International Journal of Experimental 
Education. - Issue 2. - 2013. - pp. 63-65.



Вестник Национальной инженерной академии Республики Казахстан. 2023. № 2 (88)90

16 Tuleshov A., Kassymbek Ozhikenov, R. Utebayev, E. Tuleshov. Modeling the Dynamics of 
Robot Motor Drive Control System// Applied Mechanics and Materials. -2014. - Volume 467. - pp. 
510-515. ISSN: 1662-7482(Scopus: SJR 0.415)

17 Зегжда С.А., Солтаханов Ш.Х., Юшков М.П. Уравнения движения неголономных 
систем и вариационные принципы механики. – СПб.: Изд-во Санкт-Петербургского ун-та, 
2002. – 408 с.[ Zegzhda S.A., Soltakhanov Sh.Kh., Yushkov M.P. Equations of motion of nonholo-
nomic systems and variational principles of mechanics. - St. Petersburg: Publishing house of St. 
Petersburg University, 2002. - 408 p.]

А. К. Тулешов, И. С. Гриценко, Ч. А. Алимбаев, 
Д. Керимкулов, М. Канапия

Институт механики и машиноведения им. академика У.А. Джолдасбекова,
 г. Алматы, Казахстан
Chingiz_kopa@mail.ru 

ДИНАМИКА МОБИЛЬНЫХ РОБОТОВ НА ОСНОВЕ ПРИНЦИПА 
НАИМЕНЬШЕГО ПРИНУЖДЕНИЯ ГАУССА С УЧЕТОМ СЛУЧАЙНЫХ 

ВОЗМУЩАЮЩИХ СИЛ

В работе вывод уравнений динамики четырехколесного мобильного робота осуществляется с 
использованием вариационного принципа наименьшего принуждения, известного как принцип Га-
усса. Получены уравнения неголономных связей. Составлена функция меры принуждения четырех-
колесного мобильного робота. Уравнения динамики на основе принципа Гаусса получены с учетом 
динамической характеристики двух двигателей постоянным током. Предложена методики учета 
сил трения на колесах и случайных возмущений за счет неровности полотна. На платформе Maple 
разработан алгоритм и программа моделирования динамики мобильного робота на основе прин-
ципа Гаусса и доказана корректность и правильность полученных уравнений движения робота.

Ключевые слова: мобильный колесный робот, принцип Гаусса, уравнения динамики, моделиро-
вание движения, возмущающие силы. 
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КЕЗДЕЙСОҚ ҚОЗДЫРҒЫШ КҮШТЕРДІ ЕСКЕРЕ ОТЫРЫП ЕҢ 
АЗ ШЕКТЕУ ГАУСС ПРИНЦИПІ НЕГІЗІНДЕ 

ЖЫЛЖЫМАЛЫ РОБОТТАРДЫҢ ДИНАМИКАСЫ

Бұл жұмыста төрт доңғалақты жылжымалы роботтың динамикасының теңдеулерін 
шығару Гаусс принципі деп аталатын ең аз шектеудің вариациялық принципін қолдану арқылы 
жүзеге асырылады. Голономдық емес шектеулердің теңдеулері алынды. Төрт доңғалақты 
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мобильді роботтың мәжбүрлеу функциясын құрастырылды. Гаусс принципіне негізделген 
динамикалық теңдеулер тұрақты токтың екі қозғалтқышының динамикалық сипаттамаларын 
ескере отырып алынады. Дөңгелектердегі үйкеліс күштерін және кенептің кедір-бұдырлығына 
байланысты кездейсоқ бұзылуларды есепке алу әдістері ұсынылған. Maple платформасында Гаусс 
принципі бойынша жылжымалы роботтың динамикасын модельдеу алгоритмі мен бағдарламасы 
жасалып, роботтың қозғалыс теңдеулерінің алынған дұрыстық мен дұрыстығы дәлелденді.

Түйін сөздер: қозғалмалы доңғалақты робот, Гаусс принципі, динамика теңдеулері, 
қозғалысты модельдеу, кедергі күштері. 


