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DIRECT AND INVERSE PROBLEMS FOR A TWO-DIMENSIONAL
PARABOLIC EQUATION WITH INVOLUTION

In this paper, using mappings of the involution type, we introduce a nonlocal analogue of the two-
dimensional Laplace operator and consider the corresponding two-dimensional differential equation of
parabolic type with involution. For this equation, the direct and inverse problems of finding the factors of
the right-hand side, depending on the spatial variables, are studied.

The studied problems are solved by reducing them to direct and inverse problems for classical
two-dimensional differential equations of parabolic type. On the basis of well-known theorems ob-
tained for auxiliary problems, theorems on the existence and uniqueness of the solution of the studied
problems are proved. The explicit form of solutions of the studied problems is constructed in the form
of a series.
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HNHBOIIOOUACHI BAP EKI OJIIHEMAI ITAPABOJIAJIBIK TEHJAEY
YIIIH TYPA )KOoHE KEPI ECEIITEP

Bynmaxanadaunsonoyuscel 6ap exi onumuemoi napadonanibik meHoey yulin mypajcane kepi ecenmepoin
wewiny MymKinoiein 3epmmeyee apuaizan. Kapacmuipblivin omuipean ecenmep napadonanvly munmi
KIACCUKANBIK eKl oautlemOi Ougepenyuanovly meyoeyiep yulin mypa jdcane Kkepi ecenmep uvl2apy apKblivl
wewineoi. Kemexuii ecenmep OOUbIHWA ANbIHEAH OeNeii meopemanap HeiziHOe KapacmuvlpblidmblH
ecenmepOiy wewiMOepiniy 6ap JcoHe HCANebl30blebl Mypaisbl meopemanap 0anenrdenedi. 3epmmenemin
ecenmepOiy wiewiMOepiniy aukblH popmacsl Kamap mypinoe KYpacmulpblidob.

Tyitin co30ep: ungomoyus, Oacmanxbl-ulemmik ecen, JOKATbObl emec onepamop, Kepi ecen,
napabonanvix meyoey.
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HPAMBIE 1 OBPATHBIE 3AJAYM JISA IBYMEPHOTI'O
ITAPABOJIMYECKOI'O YPABHEHHW S C UHBOJIIOITUEN

Cmamus nocesauena uccied08aHuio 60NPOCO8 PAPeUUMOCmu nPAmMol U 00pamuotl 3a0a4u 0 08y-
MepHO20 napadonuyecko2o ypasrenus ¢ ungomoyueil. Paccmampusaemvie 3a0aqu pewiaromes céedenuem
UX K NPAMBIM U 0OPAMHbIM 3A0a4am O/l KIACCUHECKUX O8YMEPHbIX OUDpepenyuanbHblX ypagHeHull napa-
bonuueckoeo muna. Ha ocHOBaHUU U36ECHHbIX MeOPeM, NOLYYEHHBIX OMHOCUMETbHO 6CHOMOSAMETbHbIX
3a0au, OOKA3aHbI MEOPEMbL O CYUeCMBOBAHUS U eOUHCMEEHHOCIU PEUEHUs] PACCMAMPUBAEMBIX 300aY.
AeHblil 610 peuteHuil ucciedyemvix 3a0ay NOCMpoeH 8 sude psod.

Knroueswie cnosa: ungonioyus, HauaibHO-Kpaesds 3a0ayd, HeIOKAIbHbIL Onepamop, 0opamuas 3a-
daua, napabonuveckoe ypagHeHue.

1. Statement of the problem. Among differential equations with deviating arguments,
a special place is occupied by equations with involutive deviations. Mapping S is called an
involution if S = E, where E is the identity mapping.

The theory of equations with involutively transformed arguments and their applications
are described in detail in monographs [1-4]. To date, for differential equations with various
types of involution, the well-posedness of boundary and initial-boundary value problems,
the qualitative properties of solutions, and spectral questions have been well studied [5—16].
It is also necessary to note some recent works on inverse problems for heat equations and
their fractional analogues [17-20].

The work is devoted to the study of solvability of direct and inverse problems for a two-
dimensional parabolic equation with involution.

Let us consider the problem statement. Let 0<p,q,T be real numbers,

H:{x:(xl,xz)e R*:0<x < p,0<X, <q} - arectangle, Q= (0,T)xIT .
For any point X = (¥, X,) € I we consider the following mappings

SOX: (Xl,Xz),SIX: (p—xl,xz),Szxz (X1’q_xz)183X: (p_xmq_xz) .

It is obvious that for any ] =0,3 the equalities S,»ZX =X, are satisfied, i.e., mappings S;
are involutions. In addition, the equalities also hold:

S,-S,=5,-S5,=5,,5,-S,=5,-5,=5,,5,-S,=5,-S, =8, .

Let & be real numbers, i= (?3 , A - the Laplace operator acting on the variables x, and

x,. For the function V(X X,) € C*(IT) we can introduce the operator

Lv(X) = a,Av(S,Xx) + a,Av(S,X) + &, AV(S,X) + a,Av(S,X) .
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The operator L will be called a nonlocal Laplace operator. If 3, =18, =0,j=1,2,3 | L
coincides with the ordinary two-dimensional Laplace operator.
Let us consider the following equation in the domain O

u, (t, X) — a,Au(t, S,x) — a,Au(t, S,x) —a,Au(t, S,x) — a;Au(t, S;x) = F(t, x), (t,X) € Q . (1)
Here AU(t, S;X) means that Au(t,S;x) = Au(t, Z)|z:ij ,j=0,3.
Ifa, =La; =0,j=12,3 , equation (1) coincides with the classical parabolic equation.

Let us introduce the class of functions W = {u(t, X):ueC ((3) NCs (Q)} and consider

the following problems in the domain Q .
Problem DP (Direct Problem). In the domain Q find the function U(t,X) eW satisfy-
ing equation (1) and the following conditions

u(0,x)=(x),xeIl , (2)
u(t,0,x,)=u(t,q,x,)=0,0<x,<0q,0<t<T, 3)
u(t,x,,0)=u(t,x,p)=0,0<x <p,0<t<T. 4)

Problem IP (Inverse Problem). Let F(t, x) = g(t) f (X, y) .Find the functions U(t, X) e W
and f(x)eC (I:I) satisfying conditions (1) - (4) and the additional condition
Uy, X) = y(x),xell (5)

where , is a fixed point in the segment (0,T], @(x),¥(X) and g() are given functions.
It should be noted that considered here DP and IP problems for the case

a,=12a;=0,j=12,3 were studied in [21].

2. Auxiliary assertions. In this section, we present some well-known assertions proved
in [26].
Let a > 0. Consider the following equation in the domain Q:

W, (t, x) —a*Aw(t, x) = F(t,x), (t,x) € Q . (6)
Let us consider the following problems in the domain Q.

Problem 1. Find the function w(t,x) eW , which in the domain Q satisfies equation (6)
and the conditions

w(0,x) = (x),x eIl (7)
w(t,0,x,) =w(t,q,x,)=0,0<x,<q,0<t<T, ®)
w(t,x,0) =w(t,x,p)=0,0<x <p,0<t<T. )

Problem 2. Let F(t,x) = g(t) f (X, y) . Find the functions w(t,x) eW and f(x)eC (ﬁ) ,

which in the domain Q satisfy conditions (6)-(9) and the additional condition
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W(ty, X) = y(x),xeIl

where £, is a fixed point in the segment (0,T] , o(x), w(X) and g(¢) are given functions.
In [26], the following assertions were proved for problems 1 and 2.
Theorem 1. If there is a solution to Problem 1 satisfying the conditions

™% _ im u, (t,xl,xz)sin%zo,ogx2 <Q,0<t<T,
p x—p- T

lim u, (t,%,%,)sin
X —0+

X X,

2

Iing u, (t,x;,x,)sin = lim u, (t,x;,X,)sin =0,0<x <p,0<t<T,
X0+ "2 X,—>q— 1

then it is unique. a B
Theorem 2. If ¢(x) € C* (H), F(t,x)eC’ (Q) and conditions

0(0,%) =0(p, %) =0,0<x, <q,0(x,0)=¢(x,9)=0,0<x, < p, (10)

F(t,0,x,)=F(t,p,x,)=0,0<x,<q,0<t<T,
F(t,x,0)=F(x,0)=0,0<sx <p,0st<sT > (11)

are satisfied, then the solution to Problem 1 from the class W exists, is unique and is
represented as a series

WEX =S Wy ()X (0, (12)
m,n=1
where
an(X) = LSi”UleSinanerm = m’Vn = E’I"lrznn = p‘rzn +V§ ’ (13)
v Pq p q

t
Wmn (t) = q)I'T}I'\e_l‘lrzm—‘azt +Ian (S) e_u%naZ(t_S)dS s
0
an (t) = (Fy an) = J‘ F(t, X)an (X)dxy(pmn = ((p, an) = J.(p(X)an (X)dX ]
" I

Theorem 3. Let the function ¢(x) belong to the class C4(I:I) and satisfy the condi-
tions

¢(0,x,) = Pyx, (0,%,)=¢(p, %) = (lexl(p, X,),0< %, <,

14
0(%,0) = 0, (%,0) = 0(4.0) = 0., (%.0).0< %, < p (19

and the function F(z, x) satisfy the conditions of Theorem 2. Then the solution to Prob-
lem 1 exists, is unique, represented in the form of series (12) and belongs to the class

c'(Q)nci(Q).

Now we will consider the main assertions for Problem 2.
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Theorem 4. Let g(t) =1 . If functions @(x) and y(x) satisfy conditions (14), then the
solution to Problem 2 exists, is unique, and can be represented in the form of series

WEX)= Y W (0K, () 1s)
(0= 31X (16

where
()2t
Oy, e mihg

fon (aumn) 5 o (@)t ] _ o-(aHm )t E

e_(au"\n)zt _ e_(a“mn)zto 1 — e_(a“mn )zl
¢mn + 2
1 —_ e_(a“mn) f

Wmn (t) =

mn »

1_ e_(aUmn)ztO
mn = ((p’ an)’wmn = (\I’!’ xmn) .

Theorem 5. Let g(t) #1,9(t) e C[0,T] and |9(t)[= g, >0 . If the functions ¢(x) and
y(x) satisfy conditions (14), the solution to Problem 2 exists, is unique, and can be repre-
sented in the form of series (15) and (16). In this case, the coefficients of these series are
determined by the equalities

b

fm=gmmﬁwm—¢m aum“”’)

gmn (t) —(an gmn (t)
1 mn
Wmn (t) ( mn (t ))e (pmn + gmn (to) Wmn

t
G (t) = J.g(S)e_(aUmn)z(t—s)dS '
0

3. Investigation of the direct problem. In this section, we consider the direct prob-
lem.

Let the function u(¢, x) be a solution to equation (1). Changing the point (z, x) by
(t,S jX), 1 =1,2,3 in equation (1) for the function u(z, x), we obtain the following system

U, =AAU +F (17)

where

ut,x) O @, a a
O

S0, oA

oS, @ &

(t,Sax)E %3 a,

a, [ CIF(t,x) T
] C
% O %asm
a [] EGS@P
aog %(t,S3X)E

N

U=

oL
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It is not difficult to show that the eigenvectors and the corresponding eigenvalues of the
matrix A can be written as:

V,=(1121)" Vv, = (11,-1,-2) v, = (1,-21,-2)" v, = (1,-1,-11)"
&=+ T8, 18,8 =8+~ —83,8, =8~ +a8 — 83,8, =8, —& —a, T8 .

Let us multiply equation (17) scalarly to the vector Vi, 1=1234. Then, taking into

account the symmetry of the matrix A and the equality, AV; =¢&,V; we get

(U.v)=a(u,av))+(FVv,) cfaiy))=ea(uy)+(Fv,)-
Further, we introduce the notation W; (t, x) = (U A ), 1=1,2,3,4 . Then for the function
W;(t,X) we obtain a system of equations
ow; (t, X) ~ .
T: g;Aw; (t,x) + F;(t,x),(t,x) €Q,j=1,2,3,4 .

where
F, (t,%) = vy F (8, %) + v, F(t,S,%) + vy F(t,5,%) + v, F(t,5,X) .

In addition, from boundary conditions (2) and (3) we obtain
3 3 .
W(0,)= 3 V,.u(0,5X)= v, 1.0(S,%)= 6,001 =14,
1=0 J=0

w; (£,0,%,) = v;;u(t,0,%,) +v,;u(t, p, %) + v3;u(t, 0,9 = x,) +v,,u(t, p,d-x,) =0
w; (t, p,X,) = vyu(t, p,X,) +V,u(t, 0,%,) + vyu(t, p,g = X,) +v,;u(t,0,g - x,) =0
w; (8, x,0) = v;u(t, x,0) +v,;u(t, p=x,0) + vgu(t,x,q) +v,;ut, p-x,9) =0
w; (t, X, 0) = Viu(t, x, q) + v,u(t, p = x,q) + vg;u(t,x,0) + v, u(t, p-x,0) =0

Thus, we have proved the following assertion.

Theorem 6. Let V; = (Vy .V, Vs Vs )" be an eigenvector of the matrix A and g, — the
corresponding eigenvalue and €; # 0, ] =1,2,3,4 | If the function u(t, x) is a solution to the
DP problem, then the functions

w; (t,X) = vy;u(t, X) + vy;u(t, S;X) + vg;u(t, S,x) + v, u(t, S;x), j =1,2,3,4
are solutions to the following problems
ow; (t, x)
ot
w;(0,X) = ¢;(x),xell , (19)

=¢,AW, (t,X)+ F;(t,X),(t,X) €Q (18j)
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Wj(t,O,Xz):Wj(t, p,X,)=0,0<t<T,0<x,<q;

w;(t,%,0) =w;(t,x,9)=0,0<t<T,0<x <p ’ (205)
where functions |Ej (t,X) and ;(X) are defined by the equalities
3 3 .
Ftx) = zvi+1,jF (txsix)!¢j(x) = zvi+1,j¢(six)’ =14 (21))
1=0 1=0

Let us prove the converse assertion. Note that the system of algebraic equations
w, (t,x) = (U V, ), j=1,2,3,4 canbe rewritten as W =VU , where

w :(wl(t,x),wz(t,x),wg(t,x),w4(t,x))T U =(U(t’X)’U(t’Slx)’u(t,SZX),u(t,ssx))T ’
M, Vi, Vi3 Vi, 0 1 1 1C

V= 1 V2,2 V2,3 V2,4 a % 1 -1 _1E
Vb, Vi, Vas Vo, (1 [ -1 1 -1
%4,1 V4,2 V4,3 V4'4E % _1 _1 1 E
41 1 L
It is easy to show that V = = 217 Hence, W =VU =U = ZVW , which is the same as

u(t,x) = % B, (t, x) +w, (t, x) + w, (t, x) + w, (t, x) &

u(t,S,x) = % B, (t, %)+ w, (t, x) = w, (t, x) = w, (t,x) &
6,520 = 5 [ (6X) + w, (1) i (6 6) = w, (10
u(t,S,x) = % B, (t, %)+ w, (t, x) = w, (t, x) = w, (t,x) &

The following assertion is valid.
Theorem 7. Let V; = (Vy ;,V, j,Vs Vs )" be an eigenvector of the matrix A and g, — the
corresponding eigenvalue and €; #0, 1 =1,2,3,4 _If functions Fi(t.X) and ¢;(X) are de-

fined by equalities (21j) and W, (t,X) are solutions to problems (18;j) - (20j),7 = 1,2,3,4, then
the function

u(t,x) = % B, (t,x) + w, (t, X) + w, (t,X) + w, (8, X) E (22)

is a solution to the DP problem.
Proof. Let the functions W;(t,X) be solutions to problems (18j) - (20j),j =1,2,3.4. Let

— 1 .
us construct a vector U = ZVW based on these functions. Then
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U, =%VWt,AU =%VAW,AAU =%AVAW )

Hence 1 1
U, — AAU :ZVWt —ZAVAW )

t

AS AV = EV u Wt _SAW = F~' Whel‘e IE = (ﬁl(t,x), I’:-’z(trx)l ﬁS(t!X)! IE4(t!X))T D) then

U, - AAU :%v(wt—AW):%VIf _

- _ 1 1 =
As F =VF HZW=E,thenZVF=F and thus

U-AA=F

t
Hence, in particular, for the function U(t,X) in (22) we get

u, (t,x) — a,Au(t, x) — a,Au(t, S,x) — a,Au(t, S,x) — a,Au(t,S,x) = f(t,x) |

i.e., the function u(t,x) satisfies equation (1). Further, as the functions W; (t.X), ] =1,2,3,4
satisfy conditions (20j), it is obvious that the function U(t,X) satisfies conditions
(3) and (4). And finally, if we denote vectors D= (@1(X):(~P2(X),¢3(X):¢4(X))T and

= ((p(X),(p(Slx),(p(SZX),(p(S3X))T through ® and @, then due to equality D=V for

1
U= ZVW we get

U| VW| (vq:) ¢

t= 0
Hence, for the function U(t,X) in (22) we obtain the condition u(0, X) = @(X) . Thus, the

function U(t,X) in (22) satisfies all conditions of the DP problem. The theorem is proved.
It follows from this theorem that to find a solution to the DP problem, it is sufficient to
solve problems (18j) - (20j).
The following assertion is valid.

Theorem 8. Let 0<¢€;,]=12,3,4, ¢(x)eC? ( ) F(t,x)eCX ((5) and conditions

(10) and (11) are satisfied. Then the solution to the DP problem exists, is unique, and is
represented as a series

U(t,X) = z (2m-1)(2n-1) (t 81)X 2m-1)(2n- 1)(X) + Z W2m 1)2n(t € )X 2m- 1)2n(X)

m,n=1 m,n=1
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+ Z W2m(2n—l)(t'€3)X2m(2n—1)(X)+ z W2m2n(tls4)X2m2n (X) . (23)

m,n=1 m,n=1

where

t
W (£.87) = Qe + [y (5) €7
0
Fon () = (F, X ) = [ FEX) X 0, (00X, @ = (@, X y) = [ 9X) X 1 (X)I¥ |
n 11

and X,,,(X),l,,,V, are determined from (13)

Proof. Let ¢(x) eC”® (1:1), F(t,x) e CS’XZ (Q) and for them conditions (10) and (11) are

satisfied. Let us introduce the functions
3 3 .

G;00=DV, ,0(SX), Ft, ) =D v, . F(t,Sx), j=14
i=0 i=0
and consider problems (18;) - (20,),j = 1,2,3.4.
It is obvious that for all j =1,4 the inclusions Ifj (t,x) e CS’XZ (@),@i(x) eC? (I:I) and
conditions
(bj(ovxz):Vj,l(P(O’Xz)+Vj,2(P(an2)+Vj,3(P(an_X2)+Vj,4(9(p1q_xz):01
(bj(p,Xz)=Vj’1(p(p,X2)+Vj'2(P(0,X2)+ij3(|)(p,q—X2)+Vj’4(p(0,q—X2)20,
(bj(xwo):Vj,l(P(XwO)"'Vj,z(P(p_X110)+Vj,3(P(X11q)+Vj,4(P(p_X1’Q):0'
(bj(qu):vj,l(p(xl’q)-l_vj,z(p(p_Xlaq)+vj,3(p(xl’0)+vj,4(p(p_Xllo):O

are satisfied. _
It is shown similarly that the function F;(t,X) satisfies the conditions
F,(t,0,%,) = F,(t,p,x,) =0,0x,<q,0<t<T,
Fi(t,%,0)=F(t,%,q)=00<x < p,0sts<T

Hence, the functions ® ;(X) and Ifj (t,x) satisfy all conditions of Theorem 2. Then, by
the assertion of this theorem, the solution to problems (18;) - (20,), / = 1,2,3,4, from the class
W exists, is unique, and can be represented as a series

w, (t,x) = i w ()X, (x),j=1234, (24)

m,n=1

where

t
J j “Hin€ j —u? g (t-
Wi (D)= e+ [F (5) €0 s
0
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Fh® = (F) X)) = [ F €0 X0 (0%, 0 = (@), X ) = [ & 00X (X)x

Further, the function Z(X) = z(S;X) satisfies the equality

209X ()dx = [ 2(S,%) X o, (¥)x = [ 2(X) X 1, (S ¥)lx

I

As

X (50 = Sinp, (p—X)sinv, X, = (—D“lﬁsinumxlsinvnxz = ()™ X, (%)

2
an(p_xl’xz)zm

2 . .
an (SZX) = xmn (leq - Xz) = Esmumxlsmvn (q - Xz) = (_l)

n+1

2N SinV, %, = (1) X, ()
q

m+n 2 m+n
X (83%) = X0 (P =X, 0 = %,) = (1) msmu X SINV, X, = (=)™ X (X)

then for coefficients @p,, we get

Ol = (B, X )= j(ZV,.ﬂ@ 8x))xmn(x)dx Zv,.ﬂjcp (SX)X g (X)X

i=0 i=0

ivj |+1I(P(X)an (Six)dx = (Vj,l + (_1)m+lvj,2 + (_1)n+lvj,3 + (_1)m+nvj,4)J‘(P(X)an (X)dX

Further, using the values Vji,i, ] =12,3,4  forallm,n=12,..., we get,

40 m=2k+1n=21+1
1 _ 1+ (=1 m+l+ -1 n+l+ -1 m+n — (2k+1)(21+1)
P = (14 (D)™ + (=)™ + (=D)™") @,y {0,0ther mn , (29
40 m=2k+1,n=2I
2 _ 1+ (-1 m+l -1 n+l m-+n — (2k+1)21 d ’
0y = (L+ ()™ = (D)™ = (-)™") @y, = {0,0ther o 2
e - nen 49, o, M=2k,n=21+1,
Q2 = (1= (D™ + (=)™ = (=)™ " ), =1 YD
0,other m,n
m+ n+ m+n 4o ,m=2k,n=2l,
0y == " s (7 | PN gy

The coefficients Fn (1) satisfy similar conditions. Then, series (24) will be written as

w(t,x) =4 z Weom-1)(2n-1) (tlsl)X(Zm—l)(Zn—l) (X) ,

m,n=1

WZ (t’ X) = 4 Z W(2m+1)2n (t’SZ)X(2m+1)2n (X) S

m,n=1
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W3 (t’ X) = 4 Z W2m(2n—1) (t’SS)XZm(Znﬂ) (X) ’

m,n=1

WA(t, X) = 4 Z W2m2n (t’£4)X2m2n (X) ,

m,n=1

where
t
Wy (t.€,) = @ + [ F, @70 0ds
0
Substituting the obtained expressions into equality (22) for the solution of the DP
problem, we obtain the representation (23). The theorem is proved.
4. Investigation of the inverse problem.

In this section, we consider the inverse problem.
Let g(¢) = 1, and functions @(x) and y(x) belong to the class C* (I:I) and satisfy condi-

tions (14). Using these functions, we construct 0;00.8;(%)
0 (X) = vi;0(X) +V,;0(S,X) + V4;0(S,X) + v, ;0(S;X) | (29)
W (X) = Vi W(X) + v, W(S,X) + Vo W(S,X) + v, w(S;X), ] =1,2,34 (30)

For the unknown function f'(x), we construct the function

fj(x) =V F(X) + vy F(S,) + v, F(S,%) +v,; T(5,%), ] =1,2,3,4

and consider the problem of determining a pair of functions {WJ. (t,x), f. (x)} satisfying the
conditions
ow, (t, x) - .

w;(0,X) = (), x e ILw;(T,X) =, (x),xel (32j)

w; (t,0,%,) =w;(t, p,x,) =0,0<t<T,0<x, <g;
W, (t,%,0) = w,(t,%,0)=0,0t<T,0<x<p

(33))

Note that if a function z(x) belongs to the class C* (ﬁ) and satisfies conditions (14),
then the functions

Z(x) = v,;2(X) +V,;2(S,X) + V5;2(S,X) +v,;2(S;%), ] =1,2,3,4
also belong to the class C* (1:[) and by virtue of the equalities

lex1 (Xl’ XZ) = Z><1x1 (p - Xl’ XZ)’ szxz (Xl’ XZ) = Z)gx1 (Xi'q - XZ)
satisfy conditions (14).
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Therefore, the functions @; (X), ¥ (X) belong to the class C* (1:[) and satisfy conditions (14).

Therefore, by the assertion of Theorem 4, the solution to problem (31j) - (33j) exists, is
unique and is represented in the form

0= 5 WX (34)
(002 Y 1D 0X,000, (39)

where
I O)) =(ejim)’to g (3) [
Wy €™

fan = Hm€; O3 e (36)
J m_e l‘lmnEth 1_e_l1mn5jt0 C
Umne t _uzmnsjto _umns it
() _€ (42— (i)
W (t) B e'l—‘%najto q) + e_l”lmngjtl) LIJ 5 (37)
P = (@5, X)) Wid = (W, X)
Let us show that the pair of functions {U(t, x), f (X)} defined by the equalities
1
U(t) = [ W60 + W, (6w (6) + w, (6] (38)
1 . - -
F=4 HO)+ 1,0+ 1,00+ ,(0)F (39)

will be a solution to the IP problem in the case g(t) =1.

Indeed, if functions W (t,x) and fj (X) are solutions to problems (31j) - (33j), then for
vectors

~ ~ ~ ~ ~ T
W = (w, (6,0, W, (8, 3), W, (), w, (6, )) " = (£,00, 5,00, F,(0, £, ()
. 1 _ 1 .
the equality W, —eAW = f is satisfied. Consider the vectors U = ZVW, f= ZVf . Then

U, — AAU :%VWt —%AVAW :%VWt —%EVAW :%v(wt —eAW)==Vf =T

1

4

If we introduce the notation F = (f (x), F(5,x), T(S,x), f (SSX))T , then from equalities
fL(0) = vy, F(0)+ v, (S + v, F(S,) + v, T(S:%), ] =1,2,34

it follows that f =VF. Therefore, Vf ==VVF =F ,l.e., f=F . Hence,

VY
4

-l>||—\
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U -AAU=F .
In particular, for functions u(z, x) and f{x) we obtain the equality
u, (t, X) —a,Au(t, S,x) — a,Au(t, S,x) — a,Au(t, S,x) — a;Au(t,S;x) = f(x),(t,x)€Q |
i.e., the pair of functions {u(t, X), f (X)} satisfies equation (1) in the case g(t) =1.

That conditions (2) and (3) are satisfied is checked in the same way as in the case of

1 1 - =
the direct problem. Indeed, for # = 0 we have U|_, = ZVW‘ = ZVCD, where @ is used

t=0
to denote the vector ® = ((f)l(x),(p2(X),(ps(x),(p‘l(x))T . The structure of functions @;(X)

is determined by equalities (29) and, therefore, the vector equality ®=V® polds where

d= ((p(x),(p(Slx),(p(Szx),(p(Ssx))T . Therefore, %Vd) = %WCI) =® . Hence, for functions

u(t, x) we get the equality u(0,x) = @(x) . Fulfillment of the condition u(T,x)=wy(x) is

proved in a similar way. And finally, due to the fulfillment of conditions (33;), the function
u(t, x) from equality (38) also satisfies the boundary conditions (3).

Now, we can find the explicit form of the functions u(z, x) and f{(x). To do this, we substi-
tute expressions from (34) - (37) into the right-hand side of equalities (38) and (39).

For coefficients e i Xon) equalities (25)—(28) are satisfied. Similar equalities are
also valid for coefficients Vo = (W, Xim) . Then

w (t,x) =4 Z Wiom-1)(2n-1) (tiel)X(Zm—l)(Zn—l)(X) ,

m,n=1

w,(t,x) =4 Z Weom-1y2n (8 €5) X (2120 (X) ,

m,n=1

W, (t,x) =4 z Wom(2n-1) (t’83)x2m(2n—1)(x) )

m,n=1

w, (t,x) =4 Z W (8 €4) X gnzn (X) ,

m,n=1
where
e*HannSjt _ e*ll%nsj"o 1— e*klzmnsjt
Winn (t’sj) = —u2 et Oy + —2e it Yo
—e mn< j 1_e mnj

Hence, for the function u(z, x) we get the representation

u(t,x) = z Weom-1yzn-1) (£ €1) X amonyan-ny (X) + z Weom-1y2n (8, €5) X (5m-1)20 (X)

m,n=1 m,n=1



Koshanova M. e. a. Direct and inverse problems for a two-dimensional parabolic ... 215
+ z Wom(zn-1) (t, 83)X2m(2n—1) (x)+ z Wy on (8,€4) X500 (X) (40)
m,n=1 m,n=1
After similar calculations for functions f{x), we obtain the representation
f(x)= Z fam-nyzn-n (€1) X 2m-nyzn-g (X) + Z fiam-n2n (€2) X 2m-ny2n (X)
m,n=1 m,n=1
+ z f2m(2n+1) (€5) XZm(2n+1) () + z fyman (€4) Xoman (X) , 41

m,n=1 m,n=1

where
e—sznEjto

fmn(e,-)=uﬁmsj(1 L 9, |.i=1234.

e_“ﬁmsjto Wonn 1— e_“%nsjto

Thus, we have proved the following assertion.

Theorem 9. Let 0<€;,]=12,3,4, o(s) = 1. If functions @(x) and y(x) satisfy condi-
tions (14), then the solution to the IP problem exists, is unique, and can be represented in

the form (40) and (41).
The following assertion is proved in a similar way.

Theorem 10. Let 0<¢;,j=1234, g(t)#19()eC[0,T] and 929, >0 1f
functions @(x) and y(x) satisfy conditions (14), then the solution to the IP problem exists,

is unique, and can be represented as series

u(t,x) = Z 9 2m-1)(2n-1) (81)X(2m—1)(2n—1)(x)+ z g(2m—1)2n(82)x(2m—1)2n (X)

m,n=1 m,n=1

+ Z me(Zn—l)(SB)XZm(Zn—l)(X)+ Z meZn(SA)XZmZn (X)

m,n=1 m,n=1

and

f(X)= Z 1:(Zm—l)(Zn—l)(el)X(Zm—l)(Zn—l)(X)-I- Z f(2m—1)2n(SZ)X(Zm—l)Zn(X)

m.n=1 m,n=1

0

+ Zl f2m(2n—1) (83)X2m(2n—1)(x)+ Z f2m2n (84)X2m2n (X) N

m,n= m,n=1

where

On (1) | —u2et Oomn (1)
gmn(e-)=(l——m" )e " Oyt Wi
! gmn (to) gmn (to) ’

1 —ul et .
fmn(e.):—(wmn _g et ‘°),J=1,2,3,4 .
g (t)

In this case, the coefficients Im () are determined by the equalities
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t
O (1) = [ g (s)e e
0

where

g,m=2i-1n=2k-1

€,,m=2i-1n=2k

™ lg;,m=2in=2k-1
€,,m=2i,n=2k
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