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GPR SOUNDING SOURCE CALIBRATION

The paper describes the process of calibrating a GPR sounding source, provides a mathematical 
basis for this process, and presents the results of calibration based on data measured in a sand quarry, 
where the electromagnetic parameters of the probed medium are known. The obtained parameter values 
characterizing the behavior of the source can now be considered known and used to numerically solve 
inverse problems to determine unknown electromagnetic parameters of the medium using algorithms that 
are not built into the GPR software.
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GPR ДЫБЫС КӨЗІН КАЛИБРЛЕУ 

Жұмыста GPR зондтау көзін калибрлеу процесі сипатталған, осы процестің математикалық 
негізі берілген және зондталатын ортаның электромагниттік параметрлері белгілі құм карьерінде 
өлшенген деректер негізінде калибрлеу нәтижелері берілген. Көздің мінез-құлқын сипаттайтын 
алынған параметр мәндерін енді белгілі деп санауға болады және GPR бағдарламалық жасақтамасына 
салынбаған алгоритмдерді пайдалана отырып, ортаның белгісіз электромагниттік параметрлерін 
анықтау үшін кері есептерді сандық түрде шешу үшін пайдалануға болады.

Түйін сөздер: GPR, бастапқы калибрлеу, кері мәселе.
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КАЛИБРОВКА ИСТОЧНИКА ЗОНДИРОВАНИЯ ГЕОРАДАРА

В работе описан процесс калибровки источника зондирования георадара, приведено матема-
тическое обоснование этого процесса, приведены результаты калибровки по данным, измеренным 
на песочном карьере, где электромагнитные параметры зондируемой среды являются известны-
ми. Полученные значения параметров, характеризующие поведение источника, теперь могут счи-
таться известными и использоваться для численного решения обратных задач по определению 
неизвестных электромагнитных параметров среды с использованием алгоритмов, которые не 
являются встроенными в математическое обеспечение георадара.

Ключевые слова: георадар, калибровка источника, обратная задача.

Introduction. The source was calibrated on a medium whose electromagnetic parameters 
were known. The work shows the possibility of determining the sounding source of GPR. 

Mathematically, the problem is equivalent to solving the inverse problem of determining 
the right side of a differential equation.

The built-in GPR software typically uses interpretation algorithms that use the travel 
times of electromagnetic waves, so the exact form of the function describing the source 
as a function of time is not required [1,2]. If there is a wish to use other algorithms for 
determining the electromagnetic properties of a medium (for example, [3]), then to use them 
one need to know the source function with good accuracy. In addition, during operation, the 
GPR may get physical damage, which may lead to changes in the function of the source.

The paper proposes to determine the source by solving a direct problem in the frequency 
domain. The main difficulty in determining the source function is that the GPR probes the 
medium at several fixed time frequencies, so the image of the source function is known only 
for a narrow range of time frequencies. What makes solving the problem easier is that the 
behavior of the source function is known, and, therefore, in order to establish its form, one 
need to determine only a few parameters on which it depends. The solution to the differential 
equation in the frequency domain is written out in analytical form, and the inverse problem 
of determining the source is reduced to finding the minimum of a functional.

1. Mathematical basis for calibration (refinement of source shape). Let's consider a 
model of a medium where the electromagnetic parameters of the medium depend only on 
the depth z: {z<0} is air, {z>0} is medium. 

Let the electromagnetic field be excited by a source of external current of the following 
type:

              j r t j j j jr z
T T( , , ) ( , ) ( , , )φ φ φ= = 0 0 , j r t f t g r z zφ φ δ( , , ) ( ) ( ) ( )= − ∗                  (1)

where z* is the source coordinate on the axis Oz, z* < 0 (the source locates in the air) and the 
value z* is quite small, and the function g(r) = q(r0 – r), where r0 > 0 is the source parameter, 
θ(x) – Heaviside θ – function. 

The electromagnetic field is described by Maxwell's equations. The medium is charac-
terized by electromagnetic parameters of the medium: permittivity ∋0 ∋ ( ∋0 is permittivity of 
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vacuum, ∋ ≥1 is relative permittivity of medium), conductivity σ and magnetic permeability 
μ. The permittivity of vacuum ∋0 = 8,854 ⋅ 10–12 (F/m), for most geophysical media m = 4p ⋅ 10–7 

(H/m). In air  ∋  = 1 and  σ = 0 (z < 0), in medium ∋  = ∋m and σ = σm (z > 0), and ∋m and σm 
are known constants. 

Since the medium is isotropic and the source does not depend on the angle φ, the Max-
well equations can be written in a cylindrical coordinates, and the components of the elec-
tromagnetic field will not depend on the angle φ. Taking into account the type of source 
(1), of the six components of the electromagnetic field, three will be non-zero: Eφ, Hr and 
Hz (see, for example, [4]). For the component Eφ the following differential equation can be 
obtained:

                          m ∋0 ∋Ef,tt + msEf,t = Ef,zz + ((1/r)(rEf)r)r – mjf,t                                      (2) 

An equation for which the initial conditions, boundary conditions and gluing conditions 
at the air-medium boundary hold:

                          E E E E
t r zφ φ φ φ< <

≡ ≡ = =
0 0 0 00 0 0 0, , [ ] , [ ] ,,                                (3)

Let measurements be made on the surface z = 0:

                                                            E r t
zφ ϕ
=+

=
0

( , ),                                                 (4)

Our goal is to determine the GPR source function  (see (1)), assuming that the electro-
magnetic component Eφ satisfies the direct problem (2)-(3), and the additional boundary 
condition (4) is known. This problem will be solved in the frequency domain.

We use the Laplace and Hankel transformations:

                                     u v z p e rE r z t J vr drdtpt( , , ) ( , , ) ( ) ,= −∞ ∞

∫ ∫0 10 ϕ                              (5)

where p = a + i2pf is the Laplace transform parameter, α is an attenuation parameter, f is a 
time frequency (Hz), J1(r) is the Bessel function of 1st order.

We will use the following notation: φ(ν, p) - image for function, φ(r, t), f(p) – Laplace 
image for the function f(t), g(v) – the Hankel image for the function g(r). It is easy to see [5, 
p. 697, # 6.561.1] that

 g v r r r J vr dr r
v

( ) ( ) ( )= − =
∞

∫0 0 1
0

2
θ π (J1(r0v)

3 
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time frequency (Hz), 𝐽1(𝑟) is the Bessel function of 1st order. 

We will use the following notation: φ(ν,p) - image for function 𝜑(𝑟, 𝑡), 𝑓(𝑝) - Laplace 
image for the function 𝑓(𝑡), 𝑔(𝜈) - the Hankel image for the function 𝑔(𝑟). It is easy to see 
[5, p. 697, # 6.561.1] that 

𝑔(𝜈) = ∫ 𝑟 𝜃(𝑟0 − 𝑟)𝐽1(𝜈𝑟)∞
0 𝑑𝑟 =  √𝜋2  𝑟0𝜈  �𝐽1(𝑟0𝜈)ℋ0(𝑟0𝜈) − 𝐽0(𝑟0𝜈)ℋ1(𝑟0𝜈)�,  

where 𝐽𝑛(𝑟) and ℋ𝑛(𝑟) are Bessel and Struve functions of n-th order (see, for example, [5,6]. 
The function 𝑢(𝜈, 𝑧,𝑝) satisfies the following equation: 
𝑢𝑧𝑧 − (𝜈2 + 𝑝2𝜇𝜖0𝜖 + 𝑝𝜇𝜎)𝑢 = 𝜇𝑝𝑓(𝑝)𝑔(𝜈)𝛿(𝑧 − 𝑧∗),     𝑧 ∈ (−∞,∞)\{0}.       (6)  
Using solutions to equation (6) on the intervals (−∞, 𝑧∗), (𝑧∗, 0), and (0,∞), 

assuming decay of the solution to equation (6) at infinity, using gluing conditions at the air-
medium interface point and at point 𝑧∗, going to the limit 𝑧∗ → 0, the following relation can 
be obtained: 

−𝜇𝑝𝑓(𝑝)𝑔(𝜈) = (𝑘� + 𝑘0)𝑢(𝜈, +0,𝑝) = (𝑘� + 𝑘0)𝜑(𝑟, 𝑡).                                   (7) 
Here 𝑘� = �𝜈2 + 𝑝2𝜇𝜖0𝜖� + 𝑝𝜇𝜎�, 𝑘0 = �𝜈2 + 𝑝2𝜇𝜖0, ℛℯ{𝑟�} > 0, ℛℯ{𝑟0} > 0. 
Using the relation (7), we can propose an algorithm for determining the source 
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Measurements were taken in a sand quarry near the village of Sabyndy, Akmola 

region. For measurements, we used the GPR “Loza-B”, whose operating frequencies are 
𝔣(1) = 150 and 𝔣(2) = 300 (MHz). 
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The function u(v, z, p) satisfies the following equation:

                uzz – (v2 + p2m ∋0 ∋ + pms)u = mpf(p)g(v)s(z – z*), z ∈ (–∞, ∞).                      (6) 

Using solutions to equation (6) on the intervals (–∞, z*), (z*,0), and (0, ∞), assuming decay of 
the solution to equation (6) at infinity, using gluing conditions at the air-medium interface point 
and at point z*, going to the limit z* → 0, the following relation can be obtained:

                  − = + + = +µ ϕpf p g v k k u v p k k r tm m( ) ( ) ( ) ( , , ) ( ) ( , )0 00 ,                              (7)

Here ∋k v p p k v p r rm m m m= + + = + > >2 2
0 0

2 2
0 00 0µ µσ µ, , Re{ } , Re{ } .∋ ∋
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Using the relation (7), we can propose an algorithm for determining the source function 
f(t). This will be described in Section 4.

2. Measurements on a known medium. Measurements were taken in a sand quarry 
near the village of Sabyndy, Akmola region. For measurements, we used the GPR “Loza-B”, 
whose operating frequencies are f(1) = 150 and f(2) = 300 (MHz).

Fig. 1 (a) shows a medium model.

           a)                                                                            b) 

Figure 1 – (a) – Medium model and placement of the source and receivers, 
(b) - Taking measurements using the GPR “Loza-B” in a sand quarry.

The known medium was dry sand, the electromagnetic properties of which were charac-
terized by relative dielectric permeability ∋m = 6 and conductivity sm = 0,0005 (S/m).

Electromagnetic waves were excited by a source of the form (1), electromagnetic wave 
receivers were located on the surface z = 0 with a step h = 0,5 (m) and were located on the 
same straight line (See Fig. 1 (a)).

Fig. 1 (b) shows the measurement process using GPR.
3. Data preparation. As noted above, the receivers recorded the electromagnetic field 

component Ej at points ( , , ), , , [ , ],r t i N t T Ti r0 1 0 50= ∈ =  (ns). Receivers are located 
at points ri (see Fig. 1 (a)), the distance between them is h. The maximum distance of the 
receiver Lr from the source of electromagnetic waves is at least 5zs, since when electro-
magnetic waves propagate deep into the medium, their amplitude decreases, the thickness 
of the skin layer is given by the formula z fs = 1/ π µσ , and, consequently, the amplitude 
electromagnetic waves passing through the medium at this distance decreases by more than 
140 times, i.e. the approximation Ej(r, 0, t) = 0 for r ≥ Lr is quite appropriate.

Data Ej(ri, 0, t) were filtered (see, for example, [7,8]).
From Kotelnikov's theorem [9] it follows that the Fourier transform frequencies used 

should not exceed the value of the Nyquist frequency vmax = 1/2h [10]. Since the Bessel 
function J1(r) behaves like a damped sinusoid, the Nyquist frequency can be used to deter-
mine the maximum spatial frequency ν. From [3] it follows that ν must satisfy the inequal-
ity v f≤ 2π µ m∋ . Therefore, we use these two inequalities to select the frequency ν for 
computing (5). Therefore, 
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can be calculated. The attenuation parameter α is selected from the condition α µ= 2zs m∋  
[3], time frequencies f are selected from the intervals [ , ] ( , )( ) ( )f f kk k− + =δ δ 1 2 , and τ is 
the time step.

4. Numerical method for determining source parameters. GPR has the ability to 
generate sounding signals only on several time frequencies, in our case on two. This means 
that for each specific sounding frequency f(k) are used in the transformation (5) only tempo-
rary frequencies  from very narrow intervals [ , ] ( , )( ) ( )f f kk k− + =δ δ 1 2 .

When designing an antenna that generates a probing electromagnetic signal, the manu-
facturer informs the GPR user about the type of source, i.e. the form of the function f(t) is 
known. It depends on the design of the GPR and, as a rule, this function can be well approxi-
mated by a decreasing sinusoid: Re sin( )−2

0
0 2π πf t f t , where f0 is the dominant frequency (in 

GPR it coincides with one of the operating frequencies) and R is the source amplitude.

We use the unknown GPR source function f(t) in the form f t f tf t( ) Re sin( )= −ρ πγπβ2
0

0 2  

and its Laplace image is f p R f
p f f

( )
( ) ( )

=
− +

2
2 2

0

0
2

0
2

πργ
πβ πγ .

It is obvious that each of the parameters r, b, and g are corrective and affects the exact 
form of the function f(t), i.e. the parameters r, b, and g are responsible for calibrating the 
GPR source.

Using the equality (7), we define the cost function Ф(r, b, g) as follows:
 

Φ( , , ) ( , ) ( )
( ) ( ). ,

ρ β γ φ µ
πργ

πβ πγ
= +

+ − +
v p g v p

k k
R f

p f fn
n

m n n

n

n n0
2

2
2 2 221

2

n

N

=∑

here k v p p k v p p i f n Nm n n m n m n n n n, ,, , , ( , )= + + = + = + =2 2
0 0

2 2
0 2 1µ µσ µ α π∋ ∋ ∋ , 

frequencies fn are selected from the interval [f(k) – d, f(k) + d] (usually with equal steps  ).
Thus, the problem of determining the unknown GPR source function f(t) is reduced to 

minimizing the cost function (8) by determining the unknown parameters r, b, and g.
The minimum of the cost function (8) can be found using the conjugate gradient method 

(see, for example, [11]). Gradient ∇ = ′ ′ ′Φ Φ Φ Φ( , , ) ( , , )ρ β γ ρ β γ  where 

 
                                                                  if    

Φ Φ

Φ Φ

( , ) ( , , ),

( , ) ( , , ),
,

,

ρ δ β γ ρ β γ

ρ δ β γ ρ β γ
ρ
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
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Φ Φ Φρ ρ ρρ δ β γ ρ δ β γ

δρ

0

2

,
( , ) ( , ) ,, ,

                                                                         else,

components ′Φβ , ′Φγ  are calculated using similar formulas. It should be noted that formulas 
of the form (9) for calculating the gradient were first used in the work [12] and further con-
firmed their effectiveness in many works (see, for example, [3, 13-19]. Explanations of why 
they are built this way can be found here [20]. The step dr (and steps for calculating ′Φβ  and 

′Φγ ) is sought when solving the inverse problem on simulated data. The value dr is selected 
for which the solution to the problem of minimizing the cost function (8) is found in the 
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least number of iterations of the minimization process. Using our experience and experience 
of [3, 13-19], it can be selected as dr = 10–6.

To start solving the problem of minimizing the function (8) by searching for unknown 
parameters r, b, and g using the conjugate gradient method, it is necessary to specify an 
initial approximation. These can be the following values: r[0] = 1, b[0] = 1, and g[0] = 1, or the 
values obtained during the last calibration of the source.

Remark: It depends on GPR construction, sometimes other the pulse forms can be used 
to model the source for the function f(t): Gaussian, Ricker source (“mexican hat”), Puzyrev 
source and etc. In this case, the proposed mathematical algorithm will not change in any 
way; the change will only affect the representation for the Laplace image f(p).

5. Calibration. The source is calibrated for each of the operating frequencies of GPR. 
Operating frequency f(k), operating frequency interval from which frequencies f were se-
lected to write the function (8), their number N is given in Tab. 1. The parameters r, b and g 
determined after practical measurements (see Fig. 1 (b)) are collected in Tab. 2

                                    Table 1.                                                                   Table 2.

k f(k), (MHz) Interval (MHz) N k f(k), (MHz) r b g
1 150 [130,170] 5 1 150 1.01 1.13 1.21
2 300 [280,320] 5 2 300 1.03 1.09 1.18

6. Testing. We use the found parameters r, b and g (see Tab. 2). Let us determine the 
relative permittivity and conductivity of clayey sandy soil near the sand quarry.

The GPR data are measured and processed, setting a = 0. From the relation (7) it fol-

lows k k i f f i f g v
v i fm = − −0 2 2

2
πµ π

φ π
( ) ( )
( , )

, and in this case  ∋m=
−

=
v k

f
k
f

m
m

m
2 2

0
2

2

2 2
Re{ }
( )

,
Im{ }

µ π
σ

µ π∋
.

The test result is shown in Tab. 3:

Table 3

k f(k), 
(MHz)

permittivity 
of soil

restored 
permittivity

conductivity 
of soil

restored 
conductivity

1 150 5.00 5.25 0.0010 0.0012
2 300 5.00 5.14 0.0010 0.0013

A satisfactory result was obtained for reconstructing the electromagnetic parameters of 
the soil.

Conclusion. The paper presents the process of calibrating the GPR source function, 
provides a mathematical basis for this process, and presents the results of calibration based 
on data measured in a sand quarry, where the electromagnetic parameters of the probed 
medium are known. The obtained parameter values characterizing the behavior of the source 
can now be considered known and used to numerically solve inverse problems to determine 
unknown electromagnetic parameters of the medium using algorithms that are not built into 
the GPR software.
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