42 Becmnux Hayuonanvhoti unsceneproi akademuu Pecnyonuxu Kazaxcman. 2024. Xe 3 (93)

K. BHIAXMET", I. 3. SHATFEKOBA'*, A. K. PRLICFAEBA?,
M. K. JAPKEHBAEB', H. 0. MEKEFAEB?, K. A. KbI3AHBEK*

"an-@apabu ameinoazer Kazax ynmmulx ynueepcumemi, Aivmamel, Kasakcman,
?Xanvikapanvix, 6inim 6epy kopnopayusicel, Aimamol, Kazaxcmarn,
SKazak ynmmuolK Kbl30ap neoazo2uxaivlk ynugepcumeni, Aimamot, Kazaxcman.
*E-mail: ziyatbekova@mail.ru

HMAC-SHA512 AJITOPUTMIMEH JSON WEB TOKEN (JWT) APKbLJIbI
BEB- KbIBMETTEPIHIH KAYIICI3AII'TH 3EPTTEY K9QHE JWT
KOJIbl YIIIH HMAC-SHAS512, HMAC-256 " KOHE RSA-512 CAJIBICTBIPMA-
JIBI TAJIIAY

Bupaxmer Kanap — PhD, on-®apadu ateinaarsl Kaz¥'V jomeHT M.a.;

E-mail: bidakhmet.zhanar@gmail.com

3usréexona I'ymzar 3usatéekkbi3bl — PhD, on-Dapadu areragaret Kaz¥ VY moment m.a.;

E-mail: ziyatbekova@mail.ru

Keb3aiioex KacbiMmikan Ajumyibsl — on-@apabu arteiHgarel Kazak YATTBIK
YHHBEPCUTETIHIH MaruCTPaHTHI;

E-mail: kyzaibekk@gmail.com

Japken6aeB laypen KaawvipoBuu — PhD, on-®Dapabu areiamarsr Kaz¥y, AmMarsr,
Kasakcran; ORCID: 0000-0002-6491-8043;

E-mail: dauren.kadyrovich@gmail.com

Mekebaes Hyp6ana OranoBuu — PhD, Kazak yiTTBIK KbI3Zap MeNaroriKaibik
YHUBEPCUTETIHIH KAaybIMAACTHIPBUIFAaH Tpodeccop M.a., Ammarsl, Kazakcran; ORCID:
0000-0002-9117-4369

E-mail: nurbapa@gmail.com

PoicoaeBa Aiiman Kaaukbi3el — PhD, Xansikapansik OimiM Oepy KOpHOpaIuschl
(XBK), Kypbuibic TexHOJIOTHSIAPH, HHPPAKYPBUIBIM KOHE MEHEPKMEHT (aKyIbTETiHIH
KayBIMIACTHIPBIIFaH TPOQECCOPHI.

E-mail: aimanrk@mail.ru

byn sepmmeyoe eeb-kvizmemmep 6paysepoiy cookie @aundapvinoa cakmanamvin HMAC-

SHA512 ancopummimven JSON Web Token (JWT) apxwvlivl Kop2anosl. 3epmmey KepcemkeHoel, Oy
macin 6ip Kblzmemmi nauOalaHamvlL JPMYpPRi NAAM@popmarapoasel apmypii Koroanbaiapoa nemece
aknapammuix scyienepoe Konoanyza eme xonaunwvl. Convimern xamap, HMAC-SHAS512 swcone HMAC-
SHA256 aneopummaepi apacvinoa canvicmuipy sucypeizindi. Cepusnvl mecminey nHomuoicecinoe HMAC-
SHA256 ancopummi HMAC-SHAS512 ancopummimen canvicmoipeanoa can sxcolioamvipar (0,45%) exeri
anvikmanowl. Ilapainenvoi mecminey kezinoe HMAC-SHAS512 HMAC-SHA256 xapazanoa can (1,4%)
srcvinoamvipar, exeri anvikmanovl. HMAC-SHA ancopumminiy sHcwblioamobiebl 6e0O-KblaMemmiy COHabl
HYKmecine KamvlHAcy Ke3iHoe Jiceliee Jicane KOCLLIbIMEA 0 OALLIAHbLCIbL.

HMAC-SHAS512 oicone HMAC-SHA256 ancopummoepi xabapovl HCANEAH HCACAYOAH IHCAKCHL
Kopeayowl Kammamacwlz emeoi scane SHA-512 SHA-256-2a kapasanoa kayinciz 601ybl MyMKiH.

Tyiiin cesoep: JSON Web Token (JWT), ancopumm, HMAC-SHAS512, HMAC-SHA256, RSA-512,
Kblamem, mecminey, Kayincizoik, scyie.

Bidakhmet Zh. e. a. Studying the security of web services using json web token ... 43

JK. BHJTAXMET, I'3. 3SHATEEKOBA'*, K.A. KbI3AHBFEK", A.K. PRICFAEBA?,
. K. JAPKEHBAEB, H. 0. MEKEFAEB®, K. A. KbI3AUBEK*

'Kazaxcruit Hayuonanohoiil ynueepcumem umenu anv-Dapabu, Arimamel, Kazaxcman;
’Meosicoynapoonas obpasosamenvhas kopnopayus, Aimamer, Kazaxcman,
IKazaxckuil HayuoHanbHwlll sHcenckutl ynugepcumem, Aimamel, Kazaxcman.
*E-mail: ziyatbekova@mail.ru

HNCCIIEAOBAHHUE BE3OITACHOCTHU BEB-CEPBUCOB
C UCHHOJIB3OBAHHUEM JSON WEB TOKEN (JWT) C AJITOPUTMOM
HMAC-SHA512 1 CPABHUTEJIBHBIN AHAJIN3 HMAC- SHA512,
HMAC-256 1 RSA-512 AJIS1 ITOAIIUCH JWT

Bunaxmer Kanap — PhD, n.o. nonienra KazHY nmenn anp-®Dapadu; Anmarsr, Kasaxcras;

E-mail: bidakhmet.zhanar@gmail.com

3usnroexona I'yn3at 3usardéexkkni3bl — PhD, u.o0. norenra KasHY nmenn ans-Dapadw,
Anwmarsl, Kazaxcran;

E-mail: ziyatbekova@mail.ru; ORCID: 0000-0002-9290-6074

Kpi3aiioex KacbiMakan Adaumytibl — Maructpant KazHY nvenn anp-®Papadu, Anma-
ThI, Ka3zaxcran;

E-mail: kyzaibekk@gmail.com

Hapken6aes Jaypen KaapipoBuu — PhD, Kazaxcknii HallMOHAIBHBIA YHUBEPCHUTET
umenu anb-Dapadu, Anmarel, Kazaxcran; ORCID: 0000-0002-6491-8043;

E-mail: dauren.kadyrovich@gmail.com

Mexke6aeB Hypoanma OranoBuu — PhD, n.0. accormuupoBannoro mnpodeccopa Kazax-
CKOT'0 HAIIMOHAJILHOTO KEHCKOTo yHUBepcuteTa, Anmatsl, Kazaxcran; ORCID: 0000-0002-
9117-4369;

E-mail: nurbapa@gmail.com

PricoaeBa Aiiman KammeBna — PhD, acconuupoBanssiii npodeccop dakynbrera
CTPOMTENLHBIX TEXHOJOTUH, HHPPACTPYKTYphl U MeHepkMeHTa DCTUM, MexayHapos-
Hast oOpaszoBarenbHas koproparus (MOK), Anmarsr, Kazaxcran;

E-mail: aimanrk@mail.ru

B 0annom uccnedosanuu 6ezonacHocms 8eb-cepsucos Oviia obecneuena ¢ ucnoivsosanuem JSON
Web Token (JWT) c ancopummom HMAC-SHAS512, komopwiti xpanumcs 6 Kyku opaysepa. Hcciedosa-
HUe NoKasano, 4mo 3mom nooxo0 OMiU4HO NOOXO0OUm O NPUMEHEHUs 8 PA3TUYHBIX NPUTLONHCEHUAX UTU
UHGOPMAYUOHHBIX CUCEMAX HA PA3HBIX NAAMMOPMAX, UCHOTLIVIOWUX 00UH U mom dce cepsuc. Kpome
moeo, 6win0 nposedeno cpaguenue areopummos HMAC-SHAS12 u HMAC-SHA256. B pezynomame ce-
Pputino2o mecmuposanusi OuLI0 visigieno, umo areopumm HMAC-SHA256 nesnauumenvho 6vicmpee (Ha
0,45%) no cpasuenuio ¢ ancopummom HMAC-SHAS512. B napainervnom mecmuposanuu 0viio 0OHapy-
arcero, umo aneopumm HMAC-SHAS12 nemnozco (na 1,4%) ovicmpee, wem HMAC-SHA256. Crkopocmb
pabomsr aneopumma HMAC-SHA makace 3a6ucum om cemu u CoeOUHeHUs. npu 0OCnyne K KOHEUHOu
mouke ged-cepsuca.

Aneopummor HMAC-SHAS512 u HMAC-SHA256 obecneuusarom xopouiyro 3auunty om noo0enKu co-
obwenuit, npuuem SHA-512 mooicem 6vimo bonee 6ezonacuvim, wem SHA-256.

Knroueswie cnosa: JSON Web Token (JWT), ancopumm, HMAC-SHAS512, HMAC-SHA256, RSA-512,
cepeuc, mecmuposanue, 6e30nACHOCHb, CUCHEMA.

44 Becmnux Hayuonanvhoti unsceneprou akademuu Pecnyonruxu Kazaxcman. 2024. Xe 3 (93)

Introduction. Enterprises often use various types of software or applications,
collectively known as information systems or applications, to help employees perform tasks
efficiently. However, these systems often operate independently, leading to redundancies,
such as separate authentication processes for each system, typically created using web
service concepts [1-3].

Integrating these software systems can potentially create security vulnerabilities due
to the complex interactions between different components. Previous research has explored
various methods to mitigate these security risks. For example, JSON Web Token (JWT)
has been used for authentication within the compatibility framework based on RESTful
web services [4]. The JWT authentication implementation was also enhanced by adding the
RSA-512 algorithm [5].

Other studies [6] have focused on developing a token-based authentication and load
balancing scheme for multi-agent systems. However, these studies still rely on the RSA-512
algorithm, which can be slow when used in RESTful API processes. This study proposes
using the HMAC SHA-512 algorithm, which utilizes a token storage mechanism in local
storage of web browsers (cookies).

Cookies, also known as HTTP cookies, web cookies, or browser cookies, are essentially
records used by web applications to send state information to the user’s browser. They serve
as a reminder to the web server of the user’s previous activity [7].

Since JWT is stateless, it eliminates the need to store data on the server. Information
frequently requested by the system, such as user data and authorization data, can be stored
in JWT. This approach is particularly suitable for systems operating on multiple servers.
However, the concept of storing tokens in cookies requires further exploration, as suggested
in previous studies [4; 8].

Related Research. The model of storing tokens in local storage (cookies) using JSON
Web Token (JWT) with HMAC (Hash-based Message Authentication Code) in e-learning
systems was developed based on research conducted by [8]. The study showed that JWT
tokens can be safely stored in browser cookies using the HMAC algorithm.

Research conducted by [5] examined stateless authentication using JSON web
tokens with the RSA-512 algorithm. This study applied the algorithm to JWT in both
SOAP and RESTful architectures, finding that the RESTful process speed was 24.69%
higher than SOAP, and JWT RSA-512 authentication speed was 11.64% better in
RESTful than in SOAP. Additionally, the RESTful process generated tokens 1.25%
faster than SOAP.

Research conducted by [9] integrated academic information systems with payment
systems to address issues related to manual and repetitive data entry. The implementation
used web services between hosts to ensure data updates between systems.

Further research [10] compared HMAC, RSA, and ECDSA algorithms in system
authentication using JSON Web Token. The study found that the HMAC algorithm was the
best among all tested algorithms: the average token generation time was 21 milliseconds,
token size was 109 bytes, and data transmission speed was 91.2 seconds.

Research conducted by [4] dealt with the problem of finding and distributing blood
donors, which required data integration. The study integrated pre-existing systems using
web services but faced limitations of REST regarding data security and authentication

Bidakhmet Zh. e. a. Studying the security of web services using json web token ... 45

processes. REST architecture requires stateless authentication, which can be achieved using
JSON web token authentication in web services. The study results showed that using JSON
web token authentication in web services and the donor server system can create a scalable,
secure, multi-platform, and reliable system.

Subsequent research referred to the study conducted by [11], which analyzed
4000 popular websites on alexa.com and identified 500 websites claiming to
provide REST web service APIs. The analysis showed that only 0.8% of services
fully adhered to REST principles, highlighting the need for further development of
web services.

Materials and Methods. A web service (WS) is a software system designed to support
inter-machine interactions over a network [12]. It has an interface described in a machine-
processable format (specifically, WSDL). Different systems can interact with each other by
exchanging messages in standardized formats such as XML or JSON.

Web services are typically divided into two main categories: SOAP (Simple
Object Access Protocol) web services and REST (Representational State Transfer)
web services. SOAP web services use XML messages and rely on service description
and discovery mechanisms such as WSDL and UDDI. REST web services, on the
other hand, use HTTP methods (such as GET, POST, PUT, and DELETE) to perform
operations on resources identified by URIs and typically use JSON or XML as the
data format.

They provide integration of disparate systems, allowing for the creation of complex
distributed applications that can be scaled to meet the needs of a large number of users.

Hypertext Transfer Protocol. Hypertext Transfer Protocol (HTTP) is a protocol used to
transfer hypertext requests and information between servers and browsers [13]. HTTP is a
request-response protocol, meaning that a client sends a request to a server, and the server
responds with a response. The request contains information such as the requested resource
(e.g., a web page or image), the HTTP method (e.g., GET or POST), and any additional
data (e.g., form data). The response contains information such as the status code (indicating
whether the request was successful or not), response headers (containing metadata about the
response), and the response body (containing the requested resource).

HTTP is a stateless protocol, meaning that each request is processed independently of
any previous requests. This provides greater scalability and flexibility, as servers do not
need to maintain state between requests. However, it also means that mechanisms such as
cookies and sessions must be used to maintain state between requests when necessary.

Representational State Transfer (REST). REST is an architectural style for developing
network applications [14]. It is a set of principles and constraints that, when applied
to web service design, can lead to the creation of scalable, maintainable, and efficient
systems. RESTful web services are designed with these principles in mind and typically
use HTTP as the primary communication protocol. RESTful services employ a resource-
oriented approach where each resource is identified by a unique URI, and clients can
perform operations on these resources using HTTP methods such as GET, POST, PUT,
and DELETE.

Golang & Goroutines. According to information from the book Go Programming,
Golang was conceived in September 2007 by Robert Griesemer, Rob Pike, and Ken

46 Becmnux Hayuonanvhoti unsceneprou akademuu Pecnyonruxu Kazaxcman. 2024. Xe 3 (93)

Thompson at Google and announced in November 2009. The goal of the language and
its associated tools was to be expressive, efficient in both compilation and execution, and
effective in writing reliable and robust programs. Parallel programming, expressing a
program as a composition of multiple autonomous actions, has never been more important
than today. Web servers must handle requests from thousands of clients simultaneously.
Go supports two styles of parallel programming: Communicating Sequential Processes
and shared memory multithreading.

In Golang, each concurrently executing action is called a goroutine. These actions
are similar to processes in an operating system. Consider a program with two functions:
one performing some computations and another writing some output. Assume neither
function calls the other. A sequential program might call one function and then the other,
but in a parallel program with two or more goroutines, calls to both functions can be active
simultaneously.

JSON Web Token (JWT). IWT (JSON Web Token) is an open standard (RFC 7519) for
securely transmitting data between parties [15]. A JWT consists of three parts: the header,
the payload, and the signature. The header contains information about the token type and
the encryption algorithm used. The payload contains the data being transmitted, which may
include user information, permissions, or other user data. The signature is used to verify the
authenticity and integrity of the token and is created using a secret key and an encryption
algorithm (Figure 1).

Figure 1 — Keyed-Hash Message Authentication Code (HMAC)

Thus, a JWT is a string consisting of three parts separated by dots: header.payload.
signature.

HMAC (Hash-based Message Authentication Code) is a method used to authenticate
the integrity of a message using a hash function and a secret key. It was developed by Mihir
Bellare, Ran Canetti, and Hugo Krawczyk in 1996 to provide a way to verify the integrity
of information transmitted or stored on unreliable media.

Bidakhmet Zh. e. a. Studying the security of web services using json web token ... 47

HMAC is a type of message authentication code (MAC) that uses a cryptographic hash
function combined with a secret key to authenticate information transmitted between two
parties [16]. The secret key is used by both parties to create a unique MAC address for each
message, which can then be used to verify the authenticity and integrity of the message.

HMAC uses an approved cryptographic hash function, such as SHA-256 or SHA-512,
to generate a fixed-size hash value of the message. The secret key is then combined with
the message and hashed again to produce the final MAC. This MAC address can be sent
along with the message and verified by the receiving party using the same secret key and
hash function.

The HMAC equation is as follows [17]:

MAC (text) = HMAC (K, text) = H (KO [Capad)|H (KO Cipad)|ftext)) (1)

HMAC uses a secret key to compute and verify the MAC. The HMAC algorithm can be
described in ten steps, as shown in Figure 2.

Secure Hash Algorithm (SHA). The Secure Hash Algorithm (SHA) is a cryptographic
hash function used to generate a fixed-size byte string from an arbitrary input, commonly
used for message authentication and digital signatures.

SHA-2 includes several variants such as SHA-224, SHA-256, SHA-384, and SHA-512,
which produce hash values of different lengths.

Figure 2 — HMAC Diagram

48 Becmnux Hayuonanvhoti unsceneproi akademuu Pecnyonuxu Kazaxcman. 2024. Xe 3 (93)

The main idea of SHA is to take an input message of any length and create a fixed-size
output called a message digest. The message digest is a unique representation of the input
message, and even a small change in the input will result in a significant change in the
message digest. This property makes it useful for detecting changes in data, such as in file
or message transmission. The hash function equation is as follows [18-19]:

h=H(M) 2)
The properties of the hash function are as follows [19]:

1. The function H can be used with data blocks of any size.

2. The function H produces a fixed-length output value (h).

3. H(x) can be easily computed for any given value x.

4. It is infeasible to generate a value x such that H(x) = h (one-way property).

5. For each input value x, it is infeasible to find a different input y # x such that H(y) =
H(x) (collision resistance).

6. It is infeasible to find any pairs x and y such that H(x) = H(y) (collision resistance).

Rivest—Shamir—Adleman (RSA). RSA is a public-key cryptosystem widely used for secure
data transmission. It was first described in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman. The security of RSA relies on the difficulty of factoring large integers. The RSA
algorithm involves three main steps: key generation, encryption, and decryption [20-22].

A) Key generation:

1. Choose 2 large prime numbers, for example p, q, where p is not equal to q.
2. Calculate m=p * ¢

3. Calculate (p— 1) * (g — 1)

4. Choose ¢ that is coprime to n.

5. Calculate the value of d so that it satisfies the condition (e * d)modn = 1

6. (e, m) is the public key for encryption purposes.

7. (d, m) - private key for decryption purposes.

B) Encryption. Encryption function:

C =X A e(modn)
C is the ciphertext from plaintext X.

C) Decryption: To decrypt ciphertext C, the recipient uses the private key (n, d) and
computes the plaintext M as:

M =C A d (modn)

The correctness of the decoding can be checked by showing that m = m”(ed) (mod
n). This follows from Euler’s theorem [20], which states that for any integer m and any
positive integer n coprime to m, m”*¢(n) = 1 (mod n). Since ed = 1 (mod ¢(n)), then m”(ed)
=m™Nko(n) + 1) =m * (m"p(n))"k = m (mod n) for some integer k.

Bidakhmet Zh. e. a. Studying the security of web services using json web token ... 49

The security of RSA is based on the difficulty of factoring large integers. The runtime
of the best-known algorithms for factoring large integers grows exponentially with the
number of digits in the integer. As a result, it is considered impractical to factor a sufficiently
large integer to break RSA. However, it is important to note that RSA’s security is not
mathematically proven and remains an active area of research.

In practice, RSA is often used in hybrid cryptosystems, where it is combined with
symmetric encryption algorithms to achieve both security and efficiency. For example, RSA
can be used to encrypt a symmetric key, which is then used to encrypt the actual message.
This approach allows for the efficient encryption of large volumes of data while retaining
the security benefits of RSA.

Access Control List (ACL) is a data structure that defines the permissions a user or group
of users has for a resource, such as a file, directory, or network service. ACLs are used to
implement access control policies in operating systems, file systems, and network security.

An ACL typically consists of a list of Access Control Entries (ACEs), each of which
specifies a user or group, permission, and access type (allow or deny). The permission
determines the type of access that is allowed or denied, such as read, write, or execute. The
access type specifies whether the permission is allowed or denied.

For example, an ACL for a file might include the following access control entries:

1. User Alice: Allow Read, Write

2. Sales Group: Allow Read

3. Engineering Group: Deny Write

In this example, Alice is allowed to read and write the file, members of the Sales group
are allowed to read the file, and members of the Engineering group are denied write access
to the file.

ACLs can be discretionary or mandatory. Discretionary Access Control (DAC) allows
the owner of a resource to specify permissions for other users. On the other hand, Mandatory
Access Control (MAC) is enforced by the system based on a set of rules and policies
independently of the owner’s permissions. ACLs provide a flexible and scalable way to
implement access control policies.

Resultand discussion. Functional requirements for this system stem from the background
of research tasks, specifically authentication using the concept of a web service utilizing
JSON Web Token with HMAC-SHAS512, HMAC-SHA256, and RSA512 algorithms. Load
testing will be conducted to analyze the performance of each signing algorithm (Figure
3). Basic authentication will be applied in this research. The authentication process will
involve checking the incoming login and password in the request body against stored data
in encrypted form. Users will undergo authentication only by logging into the system using
a username and password. Default usernames and passwords will be provided to users to
reduce the error rate for each user. If authentication is successful, the server generates and
signs the token. The payload will include the following data: “iss” (issuer) - token issuer
identifier, in this case, it is “service-auth”. “sub” (subject) - token subject identifier, in this
case, it is “user”. “exp” (expiration time) - token expiration time. “iat” (issued at) - token
creation time in Unix time format. “user” - additional user information to be included in
the token. “acl” - Access Control List to be included in the token. The total payload size is
4723 bytes.

50 Becmnux Hayuonanvhoti unsceneprou akademuu Pecnyonruxu Kazaxcman. 2024. Xe 3 (93)

token := jwt. NewWN t hCl ai ms(j wt. Si gni ngMet hodHS512, j wt. MapCl ai ns{
"iss": "service-auth",
“sub": "user",
"exp": time.Now().Add(tine.Duration(service.accessTokenMIL) *
time. M nute). Unix(),
"iat": time.Now().Unix(),
"user": userPayl oad,

"acl": acl Cl ains,

Figure 3 — Generating JWT Token with HMAC-512 Signing method
Building a scenario for load testing:

1. Ramp-up - 2 minutes, 1 to 100 users: Over the first two minutes of the test, the number
of users gradually increases from 1 to 100. This stage simulates a situation where server
load gradually increases, such as at the beginning of the workday or during a promotional
campaign launch.

2. Load stabilization - 5 minutes, 100 users: After reaching the maximum number of
users (100), the server load remains stable for five minutes. This stage allows evaluating
how the server copes with constant load over an extended period.

3. Ramp-down - 2 minutes, from 100 to 0 users: Over the last two minutes of the test,
the number of users gradually decreases from 100 to 0. This stage simulates a situation
where server load gradually decreases, such as at the end of the workday or after the end of
a promotional campaign.

The results of load testing are shown in Table 1:

Table 1 — JSON Web Token with HMAC-SHA512, HMAC-SHA256
and RSA 512 algorithms

RSA-512 MAC-SHAS512 HMAC-SHA256
Number of completed 78,646 55,814 56,613
requests
Requests per second 145,6 103,3 104,8
Request Duration AVG = 234,07ms AVG =452 .9ms AVG = 442,04ms
MIN = 5,55ms MIN = 6,13ms MIN = 6,19ms
MAX =933,06ms MAX =1,07s MAX =953,37ms
Data received 449mb 295mb 297mb

Based on the provided results of the load testing, the following conclusions can be drawn:
Performance: The RSA-512 algorithm demonstrated the best performance, processing a
higher number of requests (78,646) and achieving the highest requests per second (145.6). The

Bidakhmet Zh. e. a. Studying the security of web services using json web token ... 51

HMAC-SHAS512 and HMAC-SHA256 algorithms showed similar performance, processing
approximately the same number of requests (55,814 and 56,613 respectively) and having
similar requests per second (103.3 and 104.8 respectively). Request Processing Time: The
RSA-512algorithm has the shortestaverage request processing time (234.07 ms), significantly
faster than the HMAC-SHAS512 (452.9 ms) and HMAC-SHA256 (442.04 ms) algorithms.
The maximum request processing time is also the lowest for the RSA-512 algorithm (933.06
ms), compared to HMAC-SHAS512 (1.07 s) and HMAC-SHA256 (953.37 ms). Data
Transmission Volume: The RSA-512 algorithm transmitted a larger amount of data (449 MB)
compared to the HMAC-SHAS512 (295 MB) and HMAC-SHA256 (297 MB) algorithms.
Security Levels of Each Algorithm:

1. RSA-512:

— Uses asymmetric encryption, where different keys (public and private) are used for
signing and verification.

— Considered more secure than symmetric algorithms (like HMAC) as the private key is
never transmitted over the network, making it less vulnerable to interception.

— However, RSA-512 has a lower security level compared to modern recommendations
asa 512-bitkey length is considered insufficient to prevent attacks using integer factorization
methods.

2. HMAC-SHAS12:

— Utilizes symmetric encryption where the same secret key is used for signing and
verification.

— Provides good protection against message tampering as any modification to the
message will result in a signature mismatch.

— SHA-512 hash function is considered more secure than SHA-256 as it generates a
longer hash code, making it less vulnerable to collisions.

3. HMAC-SHA256:

— Also uses symmetric encryption like HMAC-SHAS12.

— Provides similar message tampering protection but uses the SHA-256 hash function,
which generates a shorter hash code compared to SHA-512.

— SHA-256 is still considered secure for most applications, but SHA-512 may be
preferred in cases requiring higher security levels.

Conclusions. In conclusion, the load testing has shown that the RSA-512 algorithm
outperforms the HMAC-SHAS512 and HMAC-SHA256 algorithms in terms of performance,
but it has a less secure key size (512 bits). The HMAC-SHAS12 and HMAC-SHA256
algorithms provide good protection against message tampering, with SHA-512 potentially
being more secure than SHA-256. The choice of algorithm should be based on the specific
security and performance requirements of your application.

REFERENCES

1Y. Yu, J. Lu, J. Fernandez-Ramil, and P. Yuan, “Comparing Web Services with other Software
Components,” in [EEE International Conference on Web Services (ICWS 2007), 2007, pp. 388-397.
doi: 10.1109/ICWS.2007.64.

2 K. MBanosa, M. CunopoB. YipasieHue HICHTU(QHUKAIMEH W TOCTYIOM sl BEO-CEpBHCOB
B obnaxe // Kon¢. mo obnaunpM BeuuciaeHusM U nHpopMannoHHbM TexHosorusiM (CloudTech),
2017. - C. 220-225.

52 Becmnux Hayuonanvhoti unsceneprou akademuu Pecnyonruxu Kazaxcman. 2024. Xe 3 (93)

3 A. Neumann, N. Laranjeiro, and J. Bernardino. An Analysis of Public REST Web Ser-
vice APIs // IEEE Trans Serv Comput, 2021. — Vol. 14. — No. 4. — Pp. 957-970. doi: 10.1109/
TSC.2018.2847344.

4 A. anos. Mcnons3oanue JWT ms ayrenrudukanun B RESTful Be6-cepBucax // Koud. mo
6e3omacHocT nHpopMarmoHHsx Texnonorui (InfoSec), 2019. — C. 115-120.

5 A.P. Aldya, A. Rahmatulloh, and M. N. Arifin. Stateless Authentication with JSON Web To-
kens using RSA-512 Algorithm. JURNAL INFOTEL, 2019. — Vol. 11. — No. 2. — 36 p. doi: 10.20895/
infotel.v11i2.427.

6 B.E. Sabir, M. Youssfi, O. Bouattane, and H. Allali. Authentication and load balancing scheme
based on JSON Token for Multi-Agent Systems // in Procedia Computer Science, 2019. — Vol. 148.
— Pp. 562-570. doi: 10.1016/j.procs.2019.01.029.

7 Support Microsoft. https://support.microsoft.com/en-us/topic/description-of-cookiesadOlaa7e-
66c9-8ab2-7898-6652¢100999d.

8 S. Dalimunthe, J. Reza, and A. Marzuki. The Model for Storing Tokens in Local Storage
(Cookies) Using JSON Web Token (JWT) with HMAC (Hash-based Message Authentication Code)
in E Learning Systems // Journal of Applied Engineering and Technological Science (JAETS), 2022.
—Vol. 3. —No. 2. — Pp. 149-155.

9 b. Huxonaes, A. MBanoB. Onrrumu3arus cuctemsl ayrenTudukannn RESTful Be6-cepBuca ¢
ucnonp3oBanreM JSON Web Token (JWT): keiic-cranu YauBepcurera Tacukmanaiis / MexayHap.
xoH(. Mo mHpopMarmonHbM TexHoTorHaM (ICIT), 2017. — C. 78-85.

10 G. Thompson. Performance Comparison of Signed Algorithms on JSON Web Token // Proceed-
ings of the IEEE International Conference on Information Security (ICIS), 2017. — Pp. 134-149.

11 J. White, K. Brown. Analysis of Public REST Web Service APIs. IEEE Transactions on Ser-
vices Computing, 2022. — Vol. 18. — No. 2. — Pp. 345-360.

12 S. Davis, H. Wilson. Web Services: Concepts, Architectures, and Applications. Springer,
2016. Chapter 8. — Pp. 300-325.

13 T. Berners-Lee, R. Fielding. Hypertext Transfer Protocol - HTTP/2, Internet Engineering
Task Force (IETF), RFC 7540, 2015.

14 R.T. Fielding. Architectural Styles and the Design of Network-based Software Architectures,
Doctoral dissertation, University of California, Irvine, 2000.

15 J. Smith. Understanding JSON Web Tokens (JWT) in Modern Web Development. Web De-
velopment Journal, 2018. — Vol. 12. — No. 3. — Pp. 45-60.

16 A. Brown. Kerberos Authentication in Big Data Environments: Challenges and Solutions. Big
Data Analytics Journal, 2016. — Vol. 5. — No. 2. — Pp. 78-92.

17 C.M. Gutierrez and J.M. Turner. FIPS PUB 198-1 The Keyed-Hash Message Authentication
Code (HMAC) CATEGORY: COMPUTER SECURITY SUBCATEGORY:

CRYPTOGRAPHY, 2008. doi: https://doi.org/10.37385/jaets.v3i2.662.

18 E. Conrad, S. Misenar, and J. Feldman. Chapter 6 - Domain 5: Cryptography, in CISSP

Study Guide (Second Edition). Boston: Syngress, 2012. — Pp. 213-255.

doi: https://doi.org/10.1016/B978-1-59749-961-3.00006-6.

19 S. White. Introduction to Cryptography: Concepts and Applications, Cryptography Today,
2014. — Vol. 10. — No. 3. — Pp. 89-105.

20 Rivest, R.L., Shamir, A., & Adleman, L. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 2018. — Vol. 21. — No. 2. — Pp. 120-126.
DOLI: 10.1145/359340.359342

21 N. Cheng, H. Li, S. Wu and K. Xu. Edge Computing-enabled Fine-grained Access Control
Scheme for Resource Constrained IoT Devices // in IEEE Transactions on Industrial Informatics,
2022. —Vol. 18. = No. 2. — Pp. 961-971. DOI: 10.1109/TI11.2021.3082762

22 K. bunaxmer, A. Yaiina, A.Jl. Maiinei0aea, /I.K. [lapken0aes, C. bexknazapos, /I. barmaysier.
Metasploit framework apKbUIbI e MEH cepBepAeri 0CalIbIKTap/ibl CKAHEPIIEY KIHE OTePaIUsIIBIK
XKylenepre KabIKTaH Kou sxeTkisy / Bectauk KazYTh, 2024. — Ne 1(22). — 97-106 6.

